@article{CMUC_1987_28_4_a10,
author = {H\'ajek, Petr},
title = {Partial conservativity revisited},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {679--690},
year = {1987},
volume = {28},
number = {4},
mrnumber = {928683},
zbl = {0679.03025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a10/}
}
Hájek, Petr. Partial conservativity revisited. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 4, pp. 679-690. http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a10/
[1] C. BENNET [86]: On some orderings of extensions of arithmetic. (thesis), University of Göteborg 1986.
[2] P. CLOTE [83]: Partition relations in arithmetic. Proc. Sixth Latin-American Symp. on Math. Logic, Venezuela 1983.
[3] P. CLOTE [85]: Applications of the low-basis theorem in arithmetic. Proceedings of Recursion-theory week at Oberwolfach, Springer 1985. | MR
[4] S. FEFERMAN [60]: Arithmetization of metamathematics in a general setting. Fund. Math. 49 (1960), 35-92. | MR
[5] D. GUASPARI [79]: Partially conservative extensions of arithmetic. Trans. Amer. Math. Soc. 254 (1979), 47-68. | MR
[6] P. HÁJEK [71]: On interpretability in set theories. Comment. Math. Univ. Carolinae 12 (1971), 73-79. | MR
[7] P. HÁJEK [72]: On interpretability in set theories II. Comment. Math. Univ. Carolinae 13 (1972), 445-455. | MR
[8] P. HÁJEK [79]: On partially conservative extensions of arithmetic. in: Logic Colloquium 78, North-Holland Pub. (1979), 225-234. | MR
[9] P. HÁJEK [81]: On interpretability in theories containing arithmetic II. Comment. Math. Univ. Carolinae 22 (1981), 617-688. | MR
[10] P. HÁJEK [84]: On a new notion of partial conservativity. in: Logic Colloquium 83, Lect. Notes in Math. vol. 1104.
[11] P. HÁJEK M. HÁJK0VÁ [72]: On interpretability in theories containing arithmetic. Fund. Math. 76 (1972), 131-137. | MR
[12] P. HÁJEK A. KUČERA [$\infty $] : On recursion theory in fragments of arithmetic. (to appear).
[13] G. KREISEL [62]: On weak completeness of intuitionistic predicate logic. J. Symb. Logic 27 (1962), 139-158. | MR
[14] G. KREISEL [68]: A survey on proof theory. J. Symb. Logic 33 (1968), 321-388. | MR
[15] P. LINDSTRÖM [79]: Some results on interpretability. (Jensen, Mayoh, Motler, ed.), Proc. 5th Scandinavian Logic Symp., Aalborg Univ. Press 1979. | MR
[16] P. LINOSTRÖM [84]: On partially conservative sentences and interpretability. Proceedings Amer. Math. Soc. 91 (1984), 436-443. | MR
[17] P. LINDSTRÖM [84a]: On faithful interpretability. in: Logic Colloquium 83, Lect. Notes in Math. vol. 1104, Springer - Verlag 1984. | MR
[18] S. OREY [61]: Relative interpretations. Z. Math. Logik und Grund. Math. 7 (1961), 146-153. | MR
[19] J. QUINSEY [81]: Sets of ${\Sigma}_k$-conservative sentences are ${\Pi}_2$-complete. J. Symb Logic 46 (1981), 442 (abstract.).
[20] P. PUDLÁK [85]: Cuts, consistency statements and interpretations. J. Symb. Logic 50 (1985), 423-441. | MR
[21] J. S. SHEPERDSON [60]: Representability of recursively enumerable sets in formal theories. Archiv f. math. Logik 5 (1960), 119-127. | MR
[22] C. SMORYŃSKI [81]: Fifty years of self-reference. Notre Dame Journal of Formal Logi 22 (1981), 357-374. | MR
[23] C. SMORYŃSKI [81a]: Calculating self-referential sentences: Guaspari sentences of the first kind. J. Symb. Logic 46 (1981), 329-344. | MR
[24] C. SMORYŃSKI [85]: Self-reference and modal logic. Springer-Verlag 1985. | MR
[25] V. ŠVEJDAR [81]: A sentence that is difficult to interpret. Comment. Math. Univ. Carolinae 22 (1981), 661-666. | MR
[26] V. ŠVEJDAR [83]: Modal analysis of generalized Rosser sentences. J. Symb. Logic 48 (1983), 986-999. | MR
[27] A. TARSKI A. MOSTOWSKI R. M. ROBINSON [53J: Undecidable theories. North-Holland P. C. 1953. | MR