Forced periodic oscillations in the climate system via an energy balance model
Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 4, pp. 593-601 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35B10, 35K57, 58J35
@article{CMUC_1987_28_4_a0,
     author = {Hetzer, Georg},
     title = {Forced periodic oscillations in the climate system via an energy balance model},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {593--601},
     year = {1987},
     volume = {28},
     number = {4},
     mrnumber = {928673},
     zbl = {0641.35035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a0/}
}
TY  - JOUR
AU  - Hetzer, Georg
TI  - Forced periodic oscillations in the climate system via an energy balance model
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1987
SP  - 593
EP  - 601
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a0/
LA  - en
ID  - CMUC_1987_28_4_a0
ER  - 
%0 Journal Article
%A Hetzer, Georg
%T Forced periodic oscillations in the climate system via an energy balance model
%J Commentationes Mathematicae Universitatis Carolinae
%D 1987
%P 593-601
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a0/
%G en
%F CMUC_1987_28_4_a0
Hetzer, Georg. Forced periodic oscillations in the climate system via an energy balance model. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 4, pp. 593-601. http://geodesic.mathdoc.fr/item/CMUC_1987_28_4_a0/

[1] H. AMANN: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620-709. | MR | Zbl

[2] H. AMANN: Periodic solutions of semilinear parabolic equations, in: Nonlinear Analysis. A collection of papers in honor of Erich H. Rathe, L. Cesari, R. kannan, H. E. Weinberger (Ed,), Academic Press, 1978. | MR

[3] A. BERGER, al. (Ed.): Milankovitch and Climate. NATO ASI Series C, Mathematical and physical sciences, vol. 126, pt. 1-2, Reidel, Dordrecht, 1984.

[4] A. FRIEDMAN: Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs, N. 3. 1964. | MR | Zbl

[5] D. HENRY: Geometric theory of semilinear parabolic equations. Lect. Notes Math., vol. 840, Springer-Verlag, Berlin - Heidelberg - New York, 1981. | MR | Zbl

[6] G. HETZER: The structure of the principal component for semilinear diffusion equations from energy balance climate models. to be submitted. | Zbl

[7] J. IMBRIE J. Z. IMBRIE: Ice Ages: Solving the Mystery. Enslow, Hillside, N. 3. 1979.

[8] H. JARAUSCH W. MACKENS: Solving large nonlinear systems of equations by an adaptive condensation process. to appear in "Numer. Math,". | MR

[9] R. JARAUSCH W. MACKENS: Computing bifurcation diagrams for large nonlinear variational problems. to appear in: Progress in large scale scientific computing, P. Dęuflhard and B. Engquist (Eds.), Birkhäuser, Basel, 1986. | MR

[10] G. R. NORTH J. G. MENGEL D. A. SHORT: Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages. J. Geophys. Res. 88C (1983), 6576-6586.

[11] J. SMOLLER: Shock Waves and Reaction-Diffusion Equations. Grundlehren der mathematischen Wissenschaften 258, Springer-Verlag, New York - Berlin - Heidelberg, 1983. | MR | Zbl

[12] H. TRIEBEL: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publishing Company, Amsterdam, 1978. | MR | Zbl

[13] W. WALTER: Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York - Heidelberg - Berlin, 1970. | MR