@article{CMUC_1987_28_3_a18,
author = {P\"oschel, Reinhard and Wessel, Walter},
title = {Classes of graphs definable by graph algebra identities or quasi-identities},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {581--592},
year = {1987},
volume = {28},
number = {3},
mrnumber = {912586},
zbl = {0621.05030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a18/}
}
TY - JOUR AU - Pöschel, Reinhard AU - Wessel, Walter TI - Classes of graphs definable by graph algebra identities or quasi-identities JO - Commentationes Mathematicae Universitatis Carolinae PY - 1987 SP - 581 EP - 592 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a18/ LA - en ID - CMUC_1987_28_3_a18 ER -
%0 Journal Article %A Pöschel, Reinhard %A Wessel, Walter %T Classes of graphs definable by graph algebra identities or quasi-identities %J Commentationes Mathematicae Universitatis Carolinae %D 1987 %P 581-592 %V 28 %N 3 %U http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a18/ %G en %F CMUC_1987_28_3_a18
Pöschel, Reinhard; Wessel, Walter. Classes of graphs definable by graph algebra identities or quasi-identities. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 3, pp. 581-592. http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a18/
[1] K. A. BAKER G. F. McNULTY H. WERNER: Locally finite non-finitely based varieties of algebras. Preprint 1985.
[2] S. BURRIS H. P. SANKAPPANAVAR: A course in universal algebra. Graduate Texts Math. 78. N.Y. - Heidelberg - Berlin 1981. | MR
[3] M. Ch. GOLUMBIC: Algorithmic graph theory and perfect graphs. Academic Press, New York 1980. | MR | Zbl
[4] E. W. KISS: A note on varieties of graph algebras. Lecture Notes Math. 1149 (1985), pp. 163-166. | MR | Zbl
[5] E. W. KISS R. PÖSCHEL P. PRÖHLE: Subvarieties of varieties generated by graph algebras. (Manuscript 1986, in preparat.)
[6] K. KRIEGEL R. PÖSCHEL W. WESSEL: The dimension of graphs with respect to direct powers of a two-element graph. Bull. Austral. Math. Soc. (to appear). | MR
[7] G. F. McNULTY C. SHALLON: Inherently nonfinitely based finite algebras. Lecture Notes Math. 1004 (1983), 206-231. | MR
[8] R. H. MÖHRING F. J. RADERMACHER: Substitution decomposition for discrete structures and connections with combinatorial optimization. Ann. Discrete Math. 19 (1984), 257-356. | MR
[9] Sh. OATES-WILLIAMS: Murskii's algebra does not satisfy MIN. Bull. Austral. Math. Soc. 22 (1980), 199-203. | MR | Zbl
[10] Sh. OATES-WILLIAMS: Graphs and universal algebras. Lecture Notes Math. 884 (1981), 351-354. | MR | Zbl
[11] R. PÖSCHEL: Graph algebras and graph varieties. (Manuscript 1985, submitted to Algebra Univ.).
[12] R. PÖSCHEL: Shallon-algebras and varieties for graphs and relational systems. In: J. Machner, G. Schaar (eds.), Algebra und Graphentheorie. Bergakademie Freiberg, Sekt. Math., 1986, pp. 53-56. (Proc. Conf. "Algebra und Anwendungen", Siebenlehn).
[13] R. PÖSCHEL W. WESSEL: Classes of graphs which can be defined by equations in their graph algebras. Prel. report, 1984.
[14] M. POUZET I. G. ROSENBERG: Embeddings and absolute retracts of relational systems. Preprint CRM-1265, Montreal, Febr. 1985. | MR
[15] A. PULTR: On product dimensions in general and that of graphs in particular. Vorträge zu Grundlagen der Informatik, Weiterbildungszentrum Math. Kybernetik u. Rechentechnik, Sektion Math., TU Dresden, Heft 27, (1977). 66-79.
[16] A. PULTR O. VINÁREK: Productive classes and subdirect irreducibility, in particular for graphs. Discrete Math. 20 (1977), 159-176. | MR
[17] C. R. SHALLON: Nonfinitely based finite algebras derived from lattices. Ph. D. Dissertation, Univ. of California, Los Angeles. 1979.