Classes of graphs definable by graph algebra identities or quasi-identities
Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 3, pp. 581-592 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C75, 05C99, 08A05, 08B05, 08B99, 08C15
@article{CMUC_1987_28_3_a18,
     author = {P\"oschel, Reinhard and Wessel, Walter},
     title = {Classes of graphs definable by graph algebra identities or quasi-identities},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {581--592},
     year = {1987},
     volume = {28},
     number = {3},
     mrnumber = {912586},
     zbl = {0621.05030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a18/}
}
TY  - JOUR
AU  - Pöschel, Reinhard
AU  - Wessel, Walter
TI  - Classes of graphs definable by graph algebra identities or quasi-identities
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1987
SP  - 581
EP  - 592
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a18/
LA  - en
ID  - CMUC_1987_28_3_a18
ER  - 
%0 Journal Article
%A Pöschel, Reinhard
%A Wessel, Walter
%T Classes of graphs definable by graph algebra identities or quasi-identities
%J Commentationes Mathematicae Universitatis Carolinae
%D 1987
%P 581-592
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a18/
%G en
%F CMUC_1987_28_3_a18
Pöschel, Reinhard; Wessel, Walter. Classes of graphs definable by graph algebra identities or quasi-identities. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 3, pp. 581-592. http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a18/

[1] K. A. BAKER G. F. McNULTY H. WERNER: Locally finite non-finitely based varieties of algebras. Preprint 1985.

[2] S. BURRIS H. P. SANKAPPANAVAR: A course in universal algebra. Graduate Texts Math. 78. N.Y. - Heidelberg - Berlin 1981. | MR

[3] M. Ch. GOLUMBIC: Algorithmic graph theory and perfect graphs. Academic Press, New York 1980. | MR | Zbl

[4] E. W. KISS: A note on varieties of graph algebras. Lecture Notes Math. 1149 (1985), pp. 163-166. | MR | Zbl

[5] E. W. KISS R. PÖSCHEL P. PRÖHLE: Subvarieties of varieties generated by graph algebras. (Manuscript 1986, in preparat.)

[6] K. KRIEGEL R. PÖSCHEL W. WESSEL: The dimension of graphs with respect to direct powers of a two-element graph. Bull. Austral. Math. Soc. (to appear). | MR

[7] G. F. McNULTY C. SHALLON: Inherently nonfinitely based finite algebras. Lecture Notes Math. 1004 (1983), 206-231. | MR

[8] R. H. MÖHRING F. J. RADERMACHER: Substitution decomposition for discrete structures and connections with combinatorial optimization. Ann. Discrete Math. 19 (1984), 257-356. | MR

[9] Sh. OATES-WILLIAMS: Murskii's algebra does not satisfy MIN. Bull. Austral. Math. Soc. 22 (1980), 199-203. | MR | Zbl

[10] Sh. OATES-WILLIAMS: Graphs and universal algebras. Lecture Notes Math. 884 (1981), 351-354. | MR | Zbl

[11] R. PÖSCHEL: Graph algebras and graph varieties. (Manuscript 1985, submitted to Algebra Univ.).

[12] R. PÖSCHEL: Shallon-algebras and varieties for graphs and relational systems. In: J. Machner, G. Schaar (eds.), Algebra und Graphentheorie. Bergakademie Freiberg, Sekt. Math., 1986, pp. 53-56. (Proc. Conf. "Algebra und Anwendungen", Siebenlehn).

[13] R. PÖSCHEL W. WESSEL: Classes of graphs which can be defined by equations in their graph algebras. Prel. report, 1984.

[14] M. POUZET I. G. ROSENBERG: Embeddings and absolute retracts of relational systems. Preprint CRM-1265, Montreal, Febr. 1985. | MR

[15] A. PULTR: On product dimensions in general and that of graphs in particular. Vorträge zu Grundlagen der Informatik, Weiterbildungszentrum Math. Kybernetik u. Rechentechnik, Sektion Math., TU Dresden, Heft 27, (1977). 66-79.

[16] A. PULTR O. VINÁREK: Productive classes and subdirect irreducibility, in particular for graphs. Discrete Math. 20 (1977), 159-176. | MR

[17] C. R. SHALLON: Nonfinitely based finite algebras derived from lattices. Ph. D. Dissertation, Univ. of California, Los Angeles. 1979.