@article{CMUC_1987_28_3_a16,
author = {Alas, O. T.},
title = {On the number of compact subsets in topological groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {565--568},
year = {1987},
volume = {28},
number = {3},
mrnumber = {912584},
zbl = {0632.54001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a16/}
}
Alas, O. T. On the number of compact subsets in topological groups. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 3, pp. 565-568. http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a16/
[1] O. T. ALAS: Inequalities with topological cardinal invariants. Collected papers dedicated to Prof. Edison Farah on the occasion of his retirement (1982), 91-97. | MR | Zbl
[2] W. W. COMFORT: Topological groups, Handbook of set-theoretic topology. North-Holland, Amsterdam (1984), 1145-1263. | MR
[3] W. W. COMFORT D. L. GRANT: Cardinal invariants, pseudocompactness and minimality: some recent advances in the topological theory of topological groups. Top. Proc. 6 (1981), 227-265. | MR
[4] E. van DOUWEN: The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality. Proc. Amer. Math. Soc. 80 (1980), 678-682. | MR | Zbl
[5] A. HAJNAL I. JUHÁSZ: A separable normal topological group need not be Lindelöf. Gen. Top. Appl. 6 (1976), 199-205. | MR
[6] I. JUHÁSZ: Cardinal functions in topology - ten years later. Mathematical Centre Tracts 123, Amsterdam, (1980). | MR