On the number of compact subsets in topological groups
Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 3, pp. 565-568 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 22A05, 22A10, 54A25
@article{CMUC_1987_28_3_a16,
     author = {Alas, O. T.},
     title = {On the number of compact subsets in topological groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {565--568},
     year = {1987},
     volume = {28},
     number = {3},
     mrnumber = {912584},
     zbl = {0632.54001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a16/}
}
TY  - JOUR
AU  - Alas, O. T.
TI  - On the number of compact subsets in topological groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1987
SP  - 565
EP  - 568
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a16/
LA  - en
ID  - CMUC_1987_28_3_a16
ER  - 
%0 Journal Article
%A Alas, O. T.
%T On the number of compact subsets in topological groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 1987
%P 565-568
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a16/
%G en
%F CMUC_1987_28_3_a16
Alas, O. T. On the number of compact subsets in topological groups. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 3, pp. 565-568. http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a16/

[1] O. T. ALAS: Inequalities with topological cardinal invariants. Collected papers dedicated to Prof. Edison Farah on the occasion of his retirement (1982), 91-97. | MR | Zbl

[2] W. W. COMFORT: Topological groups, Handbook of set-theoretic topology. North-Holland, Amsterdam (1984), 1145-1263. | MR

[3] W. W. COMFORT D. L. GRANT: Cardinal invariants, pseudocompactness and minimality: some recent advances in the topological theory of topological groups. Top. Proc. 6 (1981), 227-265. | MR

[4] E. van DOUWEN: The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality. Proc. Amer. Math. Soc. 80 (1980), 678-682. | MR | Zbl

[5] A. HAJNAL I. JUHÁSZ: A separable normal topological group need not be Lindelöf. Gen. Top. Appl. 6 (1976), 199-205. | MR

[6] I. JUHÁSZ: Cardinal functions in topology - ten years later. Mathematical Centre Tracts 123, Amsterdam, (1980). | MR