@article{CMUC_1987_28_3_a10,
author = {G\'ornicki, Jaros{\l}aw},
title = {Uniformly normal structure and fixed points of uniformly {Lipschitzian} mappings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {481--489},
year = {1987},
volume = {28},
number = {3},
mrnumber = {912578},
zbl = {0649.47045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a10/}
}
TY - JOUR AU - Górnicki, Jarosław TI - Uniformly normal structure and fixed points of uniformly Lipschitzian mappings JO - Commentationes Mathematicae Universitatis Carolinae PY - 1987 SP - 481 EP - 489 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a10/ LA - en ID - CMUC_1987_28_3_a10 ER -
Górnicki, Jarosław. Uniformly normal structure and fixed points of uniformly Lipschitzian mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 3, pp. 481-489. http://geodesic.mathdoc.fr/item/CMUC_1987_28_3_a10/
[1] J. B. BAILLON: Quelques aspects de la théorie des pointes fixes dans les espaces de Banach I. Séminaire d'Analyse Fonctionnelle, VII, Ecole Polytechnique, Palaiseau, France, 1978-79.
[2] J. B. BAILLON R. SCHÖNEBERG: Asymptotic normal structure and fixed points of nonexpansive maps. Proc. Amer. Math. Soc. 81 (1981), 257-264. | MR
[3] W. L. BYNUM: Normal structure coefficients for Banach spaces. Pacific J. Math. 86 (1980), 427-436. | MR | Zbl
[4] E. CASINI E. MALUTA: Fixed points of uniformly Liptschitzian mappings in spaces with uniformly normal structure. Nonlinear Analysis TMA, 9, no 1 (1985), 103-108. | MR
[5] D. DOWNING B. TURETT: Some properties of the characteristic of convexity relating to fixed point theory. Pacific J. Math. 104 (1983), 343-350. | MR
[6] A. A. GILLESPIE B. B. WILLIAMS: Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure. Appl. Anal. 9 (1979). 121-124. | MR
[7] K. GOEBEL W. A. KIRK: A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia Math. 47 (1973), 135-140. | MR
[8] K. GOEBEL W. A. KIRK R. L. THELE: Unfiromly Lipschitzian families of transformations in Banach spaces. Can. J. Math. 26 (1974), 1245-1256. | MR
[9] J. GÓRNICKI M. KRÜPPEL: A Banach measure and fixed points of uniformly Lipschitzian mappings in Banach spaces. Bull. Polish Acad. Sci. (to appear). | MR
[10] W. A. KIRK: Nonexpansive mappings and normal structures in Banach spaces. Proc. of Research Workshop on Banach space theory, The University of Iowa, 1981, 113-127. | MR
[11] M. KRÜPPEL J. GÓRNICKI: Ein masstheoretischer Fixpunktsatz für nichtlineare Operatoren im Hilbert Raum. Wiss. Z. Pädagog. Hochsch. "Liselotte Hennam" Güstrow, Math, Nat. Fak., Heft 1/1086, 59-66. | MR
[12] E. A. LIFSCHITZ: Fixed point theorem for operators in strongly convex spaces. Voronež Gos. Univ., Trudy Mat. Fak. 16 (1975), 23-2B (in Russian).
[13] T. C. LIM: Fixed point theorems for uniformly Lipschitzian mappings in $L^p$ spaces. Nonlinear Analysis TMA 7 (1983), 555-563. | MR
[14] E. MALUTA: Uniformly normal structure and related coefficients. Pacific J. Math. 111, no 2 (1984), 357-369. | MR | Zbl
[15] S. SWAMINATHAN: Normal structure in Banach spaces and its generalizations. Contemporary Math. 18 (1983), 201-215. | MR