Three classes of diameter edge-invariant graphs
Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 2, pp. 227-232
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1987_28_2_a4,
author = {Lee, Sin Min and Tanoto, Rudy},
title = {Three classes of diameter edge-invariant graphs},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {227--232},
year = {1987},
volume = {28},
number = {2},
mrnumber = {904748},
zbl = {0627.05041},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a4/}
}
Lee, Sin Min; Tanoto, Rudy. Three classes of diameter edge-invariant graphs. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 2, pp. 227-232. http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a4/
[1] J. C. BERMOND J. BOND A. PAOLI C. PEYRAT: Graphs and interconnection networks: diameter and vulnerability. London Math. Soc. Lecture Note No. 82, Cambridge Univ. Press 1983, 1-30. | MR
[2] F. R. K. CHUNG: Diameter of communication networks. 1985, Preprint. | MR
[3] W. GOLOMB: Polyominoes. Scribner, New York, 1965.
[4] Sin-Min LEE K. C. NG: Every Young Tableau graph is d-graceful. Abstract of AMS 83T-05-266.
[5] Sin-Min LEE: Design of diameter edge-invariant networks. Preprint 1986.
[6] D. ORE: Diameter of Graphs. Journal of Combinatorics Theory 5 (1968), 75-81. | MR