Three classes of diameter edge-invariant graphs
Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 2, pp. 227-232 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05B50, 05C35, 05C38, 05C75, 05C99
@article{CMUC_1987_28_2_a4,
     author = {Lee, Sin Min and Tanoto, Rudy},
     title = {Three classes of diameter edge-invariant graphs},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {227--232},
     year = {1987},
     volume = {28},
     number = {2},
     mrnumber = {904748},
     zbl = {0627.05041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a4/}
}
TY  - JOUR
AU  - Lee, Sin Min
AU  - Tanoto, Rudy
TI  - Three classes of diameter edge-invariant graphs
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1987
SP  - 227
EP  - 232
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a4/
LA  - en
ID  - CMUC_1987_28_2_a4
ER  - 
%0 Journal Article
%A Lee, Sin Min
%A Tanoto, Rudy
%T Three classes of diameter edge-invariant graphs
%J Commentationes Mathematicae Universitatis Carolinae
%D 1987
%P 227-232
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a4/
%G en
%F CMUC_1987_28_2_a4
Lee, Sin Min; Tanoto, Rudy. Three classes of diameter edge-invariant graphs. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 2, pp. 227-232. http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a4/

[1] J. C. BERMOND J. BOND A. PAOLI C. PEYRAT: Graphs and interconnection networks: diameter and vulnerability. London Math. Soc. Lecture Note No. 82, Cambridge Univ. Press 1983, 1-30. | MR

[2] F. R. K. CHUNG: Diameter of communication networks. 1985, Preprint. | MR

[3] W. GOLOMB: Polyominoes. Scribner, New York, 1965.

[4] Sin-Min LEE K. C. NG: Every Young Tableau graph is d-graceful. Abstract of AMS 83T-05-266.

[5] Sin-Min LEE: Design of diameter edge-invariant networks. Preprint 1986.

[6] D. ORE: Diameter of Graphs. Journal of Combinatorics Theory 5 (1968), 75-81. | MR