Fixed points, equilibria and maximal elements in linear topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 2, pp. 377-385 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47H05, 47H10, 54H25, 55M20, 90A14, 91B50
@article{CMUC_1987_28_2_a17,
     author = {Mehta, Ghanshyam},
     title = {Fixed points, equilibria and maximal elements in linear topological spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {377--385},
     year = {1987},
     volume = {28},
     number = {2},
     mrnumber = {904761},
     zbl = {0632.47041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a17/}
}
TY  - JOUR
AU  - Mehta, Ghanshyam
TI  - Fixed points, equilibria and maximal elements in linear topological spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1987
SP  - 377
EP  - 385
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a17/
LA  - en
ID  - CMUC_1987_28_2_a17
ER  - 
%0 Journal Article
%A Mehta, Ghanshyam
%T Fixed points, equilibria and maximal elements in linear topological spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1987
%P 377-385
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a17/
%G en
%F CMUC_1987_28_2_a17
Mehta, Ghanshyam. Fixed points, equilibria and maximal elements in linear topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 2, pp. 377-385. http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a17/

[1] BROWDER F.: The fixed-point theory of multi-valued mappings in topological vector spaces. Mathematische Annalen 177 (1968), 283-301. | MR | Zbl

[2] FAN K.: Some properties of convex sets related to fixed point theorems. Mathematische Annalen 266 (1984), 519-537. | MR | Zbl

[3] FLAM S.: Abstract economies and games. Soochow Journal of Mathematics 5 (1979), 155-162. | MR

[4] GALE D., MAS-COLELL A.: An equilibrium existence theorem for a general model without ordered preferences. Jou Journal of Mathematical Economics 2 (1975), 9-16. | MR | Zbl

[5] GRANAS A., BEN-EL-MECHAIEKH, DEGUIRE P.: Fixed points and coincidences for setvalued maps of type $\Phi $. Comptes Rendus Acad. Sc, Paris, October 1982, pp. 381-384.

[6] HADŽIĆ O.: A coincidence theorem in topological vector spaces. Bulletin of the Australian Mathematical Society 33 (1986), 373-382. | MR

[7] HIMMELBERG C. J.: Fixed points for compact multifunctions. Journal of Mathematical Analysis and Applications 38 (1972), 205-207. | MR

[8] KELLEY J.: General Topology. Van Nostrand, Princeton, 1955. | MR | Zbl

[9] MEHTA G., TARAFDAR E.: Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar. 1985, Journal of Economic Theory (to appear). | MR | Zbl

[10] TARAFDAR E.: On nonlinear variational inequalities. Proceedings of the American Mathematical Society 67 (1977), 95-98. | MR | Zbl

[11] TARAFDAR E., MEHTA G.: On the existence of quasi-equilibrium in a competitive economy. International Journal of Science and Engineering 1 (1984), 1-12.

[12] YANNELIS N., PRABHAKAR N.: Existence of maximal elements and equilibria in linear topological spaces. Journal of Mathematical Economics 12 (1983), 233-245. | MR | Zbl