Minimal convex-valued weak$^\ast$ USCO correspondences and the Radon-Nikodým property
Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 2, pp. 353-376 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46B20, 46B22, 47H05
@article{CMUC_1987_28_2_a16,
     author = {Jokl, Lud\v{e}k},
     title = {Minimal convex-valued weak$^\ast$ {USCO} correspondences and the {Radon-Nikod\'ym} property},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {353--376},
     year = {1987},
     volume = {28},
     number = {2},
     mrnumber = {904760},
     zbl = {0642.46015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a16/}
}
TY  - JOUR
AU  - Jokl, Luděk
TI  - Minimal convex-valued weak$^\ast$ USCO correspondences and the Radon-Nikodým property
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1987
SP  - 353
EP  - 376
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a16/
LA  - en
ID  - CMUC_1987_28_2_a16
ER  - 
%0 Journal Article
%A Jokl, Luděk
%T Minimal convex-valued weak$^\ast$ USCO correspondences and the Radon-Nikodým property
%J Commentationes Mathematicae Universitatis Carolinae
%D 1987
%P 353-376
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a16/
%G en
%F CMUC_1987_28_2_a16
Jokl, Luděk. Minimal convex-valued weak$^\ast$ USCO correspondences and the Radon-Nikodým property. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 2, pp. 353-376. http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a16/

[1] E. Asplund: Fréchet differentiability of convex functions. Acta Math. 121 (1968), 31-47. | MR | Zbl

[2] E. Asplund R. T. Rockafellar: Gradients of convex functions. Tгans. Ameг. Math. Soc. 139 (1969), 443-467 | MR

[3] E. Bishop R. R. Phelps: A pгoof that every Banach space is subreflexive. Bull. Amer. Math. Soc. 67 (1961), 97-98 | MR

[4] R. D. Bourgin: Geometric Aspects of Convex Sets with the Radon-Nikodým Property. Lecture Notes in Mathematics, Vol. 993, Springer-Verlag . | MR | Zbl

[5] A. Brøndsted R. T. Rockafellar: On the subdifferentiability of convex functions. Proc. Amer. Math. Soc. 16 (1965), 605-611. | MR

[6] J. P. R. Christensen: Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set valued mappings. Proc. Amer. Math. Soc. 86 (1982), 649-655. | MR

[7] J. P. R. Christensen P. S. Kendeгov: Dense strong continuity of mappings and the Radon-Nikodým property. Math. Scand. 54 (1984), 70-78. | MR

[8] J. B. Collieг: The dual of a space with the Radon-Nikodým property. Pacific J. Math. 64 (1976), 103-106. | MR

[9] S. Fitzpatrick: Monotone operatoгs and dentability. Bull. Austral. Math. Soc. 18 (1978), 77-82. | MR

[10] S. Fitzpatгick: Separately related sets and the Radon-Nikodým property. Illinois J. Math. 29 (1985), 229-247.

[11] J. R. Giles: On the characterization of Asplund spaces. J. Austral. Math. Soc. (Series A) 32 (1982), 134-144. | MR

[12] J. R. Giles: Convex Analysis with Aplication in Differentiation of Convex Functions. Pitman, London, 1982 | MR

[13] L. Hörmander: Sur la fonction d'appui des ensembles convexes dans un espace localement convexe. Arkiv für Math. 3 (1954), 181-186. | MR

[14] A. D. Ioffe V. M. Tihomirov: Theory of Extremal Problems. North Holland, Amsterdam, 1979. | MR

[15] L. Jokl: Některé aspekty konvexni analyzy a teorie Asplundových prostorů (Some aspects of convex analysis and the theory of Asplund spaces). CSc - thesis, Prague 1985.

[16] L. Jokl: Upper semicontinuous compact valued correspondences and Asplund spaces. to appear.

[17] L. Jokl: Convex-velued weak * usco correspondences. Comment. Math. Univ. Carolinae, 28, 1 (1987). | MR

[18] P. S. Kenderov: Semi-continuity of set-valued monotone mappings. Fundamenta Mathematicae, LXXXVIII (1975), 61-69. | MR | Zbl

[19] P. S. Kenderov: Multivalued monotone mappings are almost everywhere single-valued. Studia Mathematica, T. LVI. (1976), 199-203. | MR | Zbl

[20] P. S. Kenderov: Monotone operators in Asplund spaces. C. R. Acad. Sci. Bulgare 30 (1977), 963-964. | MR | Zbl

[21] P. S. Kenderov: Most of the optimization problems have unique solution. International Series of Numerical Mathematics. Vol. 72, 1984, Birkhauser Verlag Basel, 203-216. | MR | Zbl

[22] J. J. Moreau: Semi-continuity du sous-gradient d'une fonctionelle. C. R. Paris 260 (1965), 1067-1070. | MR

[23] I. Namioka R. R. Phelps: Banach spaces which are Asplund spaces. Duke Math. J. 42 (1975), 735-750. | MR

[24] R. R. Phelps: Dentability and extreme points in Banach spaces. J. Functional Anal. 17 (1974), 78-90. | MR | Zbl

[25] R. R. Phelps: Differentiability of Convex Functions on Banach Spaces. Lecture Notes, University London 1978.

[26] C. Stegall: Gâteaux differentiation of functions on a certain class of Banach spaces. Funct. Anal. Surveys and Recent Results, Amsterdam 1984, 35-45. | MR | Zbl

[27] C. Stegall: More Gâteaux differentiability spaces, Banach Spaces. Proceedings, Missouri 1984, Lecture Notes in Mathematics, Vol. 1166, Berlin 1985. | MR