@article{CMUC_1987_28_2_a12,
author = {Fabi\'an, Mari\'an J. and Preiss, David},
title = {A generalization of the interior mapping theorem of {Clarke} and {Pourciau}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {311--324},
year = {1987},
volume = {28},
number = {2},
mrnumber = {904756},
zbl = {0625.46052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a12/}
}
TY - JOUR AU - Fabián, Marián J. AU - Preiss, David TI - A generalization of the interior mapping theorem of Clarke and Pourciau JO - Commentationes Mathematicae Universitatis Carolinae PY - 1987 SP - 311 EP - 324 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a12/ LA - en ID - CMUC_1987_28_2_a12 ER -
Fabián, Marián J.; Preiss, David. A generalization of the interior mapping theorem of Clarke and Pourciau. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 2, pp. 311-324. http://geodesic.mathdoc.fr/item/CMUC_1987_28_2_a12/
[1] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | MR | Zbl
[2] F. H. CLARKE: On the inverse function theorem. Pacific J. Math. 64 (1976), 97-102. | MR | Zbl
[3] W. J. CRAMER, Jr. W. O. RAY: Solvability of nonlinear operator equations. Pacific J. Math. 95 (1981), 37-50. | MR
[4] J. DIESTEL: Geometry of Banach spaces - Selected topics. Lect. Notes 485, Springer Verlag, Berlin 1975. | MR | Zbl
[5] D. DOWNING W. A. KIRK: A generalization of Caristi's theorem with applications to nonlinear mapping theory. Pacific J. Math. 69 (1977), 339-346. | MR
[6] D. S. DŽUMABAEV: On solvability of nonlinear closed operator equations. (Russian), Izv. Akad. Nauk Kazach. SSR, Ser. Fyz.-Mat. No. 1, 1984, 31-34. | MR
[7] M. FABIAN: Concerning interior mapping theorem. Comment. Math. Univ. Carolinae 20 (1979), 345-356. | MR | Zbl
[8] M. FABIAN L. ZAJÍČEK V. ZIZLER: On residuality of the set of rotund norms on a Banach space. Math. Ann. 258 (1982), 349-351. | MR
[9] L. M. GRAVES: Some mapping theorems. Duke Math. J. 17 (1950), 111-114. | MR | Zbl
[10] V. PTÁK: A quantitative refinement of the closed graph theorem. Czech. Math. 3. 24 (1974), 503-506. | MR
[11] B. H. POURCIAU: Analysis and optimization of Lipschitz continuous mappings. J. Opt. Theory Appl. 22 (1977), 311-351. | MR | Zbl
[12] T. SZILÁGYI: Generalization of the implicit function theorem and of Banach s open mapping theorem. Acta Scient. Math. 38 (1977), 391-396. | MR
[13] C. URSESCU: Letter to the first named author, January 1984.