On a certain class of multidigraphs, for which reversal of no arc decreases the number of their cycles
Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 1, pp. 185-189
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1987_28_1_a18,
author = {Jir\'asek, Jozef},
title = {On a certain class of multidigraphs, for which reversal of no arc decreases the number of their cycles},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {185--189},
year = {1987},
volume = {28},
number = {1},
mrnumber = {889780},
zbl = {0624.05034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_1_a18/}
}
TY - JOUR AU - Jirásek, Jozef TI - On a certain class of multidigraphs, for which reversal of no arc decreases the number of their cycles JO - Commentationes Mathematicae Universitatis Carolinae PY - 1987 SP - 185 EP - 189 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1987_28_1_a18/ LA - en ID - CMUC_1987_28_1_a18 ER -
%0 Journal Article %A Jirásek, Jozef %T On a certain class of multidigraphs, for which reversal of no arc decreases the number of their cycles %J Commentationes Mathematicae Universitatis Carolinae %D 1987 %P 185-189 %V 28 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_1987_28_1_a18/ %G en %F CMUC_1987_28_1_a18
Jirásek, Jozef. On a certain class of multidigraphs, for which reversal of no arc decreases the number of their cycles. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 1, pp. 185-189. http://geodesic.mathdoc.fr/item/CMUC_1987_28_1_a18/
[1] C. BERGE: Graphs and Hypergraphs. Amsterdam, North-Holland Publ. Co. 1973. | MR | Zbl
[2] E. J. GRINBERG: Oral communication. | Zbl
[3] J. JIRÁSEK: Cykly v orientovaných grafoch. diplomová práca, MFF UK Praha 1984 (in Slovak).
[4] Proceedings of Smolenice Conference: Theory of Graphs and its Applications. (M. Fiedler, ed,), New York, Academia Press 1962.
[5] C. THOMASSEN: Counterexamples to Ádám's Conjecture on Arc Reversals in Directed Graphs. J. Comb. Th. B (1986).