@article{CMUC_1987_28_1_a14,
author = {Chabrowski, Jan H.},
title = {On the {Dirichlet} problem for a degenerate elliptic equation},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {141--155},
year = {1987},
volume = {28},
number = {1},
mrnumber = {889776},
zbl = {0617.35047},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1987_28_1_a14/}
}
Chabrowski, Jan H. On the Dirichlet problem for a degenerate elliptic equation. Commentationes Mathematicae Universitatis Carolinae, Tome 28 (1987) no. 1, pp. 141-155. http://geodesic.mathdoc.fr/item/CMUC_1987_28_1_a14/
[1] J. CHABROWSKI B. THOMPSON: On traces of solutions of a semilinear partial differential equation of elliptic type. Ann. Polon. Math. 42 (1982), 45-71. | MR
[2] J. CHABROWSKI B. THOMPSON: On the boundary values of the solutions of linear elliptic equations. Bull. Austral. Math. Soc. 27(1983), 1-30. | MR
[3] D. GILBARG N. S. TRUDINGER: Elliptic partial differential equations of second order. Die Grundlehren der Matheroatischen Wissenschäften 223, Springer-Verlag, Berlin, Heidelberg, New York, 1977. | MR
[4] C. GOULAOUIC N. SHIMUKURA: Regularity hölderienne de certain problèmes aux limites elliptiques dégénérés. Ann. Sc. Norm. Sup. di Pisa, 10 (1), (1983), 79-108. | MR
[5] J. J. KOHN L. NIRENBERG: Degenerate elliptic parabolic equations of second order. Comm. Pure Appl. Math. 20 (1967), 797-872. | MR
[6] A. KUFNER O. JOHN S. FUČÍK: Function spaces. Noordhoff, Leyden, Academia, Prague, 1977. | MR
[7] Michel LANGLAIS: On the continuous solutions of a degenerate elliptic equation. Proc. London Math. Soc. (3) (50) (1985), 282-298. | MR
[8] R. D. MEYER: Some embedding theorems for generalized Sobolev spaces and applications to degenerate elliptic differential operators. J. Math, Mech. 16 (1967), 739-760. | MR | Zbl
[9] V. P. MIKHAILOV: Boundary values of the solutions of elliptic equations in domains with smooth boundary. Mat. Sb. 101 (143) (1976), 163-188. | MR
[10] O. A. OLEĬNIK E. V. RADKEVIČ: Second order equations with non-negative characteristic form. Am. Math. Soc. Providence, Plenum, New York 1976.