@article{CMUC_1986_27_4_a2,
author = {Valov, Vesko},
title = {Some properties of $C_p (X)$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {665--672},
year = {1986},
volume = {27},
number = {4},
mrnumber = {874659},
zbl = {0602.54016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1986_27_4_a2/}
}
Valov, Vesko. Some properties of $C_p (X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 4, pp. 665-672. http://geodesic.mathdoc.fr/item/CMUC_1986_27_4_a2/
[1] A. ARHANGEL'SKII: Function spaces with the topology of pointwise convergence and compact spaces. Uspehi Mat. Nauk 39 (1984), 11-50.
[2] A. ARHANGEL'SKII: On some spaces used in the functional analysis. Uspehi Mat. Nauk 31 (1976), 17-32. | MR
[3] S. ARGYROS S. MERCOURAKIS S. NEGREPONTIS: Analytic properties of Corson-compact spaces. Fifth Prague Topol. Symp. 1981 (Heldermann Verlag Berlin 1982), 12-13. | MR
[4] M. ASANOV: On cardinal invariants of function spaces, Modern topolopy and set-theory. Udmurt. State Univ. (Izevsk 1979), 8-12.
[5] E. EFIMOV: On dyadic compacts. Trudy Mosk. Mat. Obšč. 14 (1965), 211-247. | MR
[6] I. NAMIOKA: Separate continuity and joint continuity. Pacif. J. Math. 51 (1974), 515-531. | MR | Zbl
[7] E. PYTKEEV: On tightness of function spaces. Uspehi Mat. Nauk 37 (1982), 157-158. | MR
[8] E. ŠČEPIN: On $k$-metrizable spaces. Izv. Akad. Nauk SSSR 43 (1979), 442-478. | MR
[9] M. TKAČENKO: The notion of $o$-tightness and $C$-embedded subspaces of products. Top. and Appl. 15 (1983), 93-98. | MR
[10] V. VALOV: A note on spaces with lattices of $d$-open mappings. Comp. Rend. Acad. Bulg. Sci. (1986), to appear. | MR | Zbl
[11] V. VALOV: Some characterizations of the spaces with a lattice of $d$-open mappings. Comp. Rend. Acad. Bulg. Sci. (1986), to appear. | MR | Zbl
[12] N. VELIČKO: On weak topology of function spaces. Mat. Zametki 30 (1981), 703-712. | MR
[13] P. ZENOR: Hereditary $m$-separability and the hereditary $m$-Lindelöf property in product spaces and function spaces. Fund. Math. 106 (1980), 175-180. | MR | Zbl