On the unique solvability of nonresonant elliptic equations
Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 2, pp. 301-306
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1986_27_2_a9,
author = {Quittner, Pavol and \v{Z}ubrini\'c, Darko},
title = {On the unique solvability of nonresonant elliptic equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {301--306},
year = {1986},
volume = {27},
number = {2},
mrnumber = {857550},
zbl = {0603.35035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a9/}
}
TY - JOUR AU - Quittner, Pavol AU - Žubrinić, Darko TI - On the unique solvability of nonresonant elliptic equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 1986 SP - 301 EP - 306 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a9/ LA - en ID - CMUC_1986_27_2_a9 ER -
Quittner, Pavol; Žubrinić, Darko. On the unique solvability of nonresonant elliptic equations. Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 2, pp. 301-306. http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a9/
[1] H. AMANN: Saddle points and multiple solutions of differential equations. Math. Z. 169 (1979), 129-166. | MR | Zbl
[2] C. L DOLPH: Nonlinear integral equations of the Hammerstein type. Trans. Amer. Soc. 66 (1949), 289-307. | MR | Zbl
[3] D. G.de FIGUEIREDO: The Dirichlet problem for nonlinear elliptic problems: a Hilbert Space approach. Lecture Notes in Math. No. 446, Springer, Berlin (1975), 144-165. | MR
[4] S. FUČÍK: Solvability of Nonlinear Equations and Boundary Value Problems. D. Reidel Publishing Co., Holland, 1980. | MR
[5] D. ŽUBRINIĆ: On the existence of solutions of - $\Delta u = g(x,u,\nabla u)$. Glasnik Mat., in press. | Zbl