@article{CMUC_1986_27_2_a5,
author = {Tkachuk, V. V.},
title = {Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {267--276},
year = {1986},
volume = {27},
number = {2},
mrnumber = {857546},
zbl = {0601.54002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a5/}
}
TY - JOUR
AU - Tkachuk, V. V.
TI - Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1986
SP - 267
EP - 276
VL - 27
IS - 2
UR - http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a5/
LA - en
ID - CMUC_1986_27_2_a5
ER -
%0 Journal Article
%A Tkachuk, V. V.
%T Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1986
%P 267-276
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a5/
%G en
%F CMUC_1986_27_2_a5
Tkachuk, V. V. Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 2, pp. 267-276. http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a5/
[1] M. E. RUDIN: Lectures on set theoretic topology. Conf. ser. in Math, 23, Amer. Math. Soc, Providence, 1975. | MR | Zbl
[2] A. B. AРХАНГЕЛЬСКИЙ: Cтроенийе и классификация топологицеских пространств и кардинальные инварианты. Уcпехи Матем. Наук 33, 6 (1978), 29-84. | MR | Zbl
[3] D. B. ŠAHMATOV: No upper bound for cardinalities of Tychonoff ccc spaces with a $G_{\delta}$-diagonal exists. (An answer to J. Ginsburg and R. G. Woods question.) Comment. Math. Univ. Carolinae 25 (1984), 731-746. | MR
[4] J. GINSBURG R. G. WOODS: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Amer. Math. Soc. 64 (1977), 357-360. | MR
[5] V. V. USPENSKIJ: A large $F_{\sigma}$-discrete Fréchet space having the Souslin property. Comment. Math. Univ. Carolinae 25 (1984), 257-260. | MR