Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$
Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 2, pp. 267-276 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54A25, 54C35, 54C40, 54D60
@article{CMUC_1986_27_2_a5,
     author = {Tkachuk, V. V.},
     title = {Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {267--276},
     year = {1986},
     volume = {27},
     number = {2},
     mrnumber = {857546},
     zbl = {0601.54002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a5/}
}
TY  - JOUR
AU  - Tkachuk, V. V.
TI  - Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1986
SP  - 267
EP  - 276
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a5/
LA  - en
ID  - CMUC_1986_27_2_a5
ER  - 
%0 Journal Article
%A Tkachuk, V. V.
%T Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1986
%P 267-276
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a5/
%G en
%F CMUC_1986_27_2_a5
Tkachuk, V. V. Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 2, pp. 267-276. http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a5/

[1] M. E. RUDIN: Lectures on set theoretic topology. Conf. ser. in Math, 23, Amer. Math. Soc, Providence, 1975. | MR | Zbl

[2] A. B. AРХАНГЕЛЬСКИЙ: Cтроенийе и классификация топологицеских пространств и кардинальные инварианты. Уcпехи Матем. Наук 33, 6 (1978), 29-84. | MR | Zbl

[3] D. B. ŠAHMATOV: No upper bound for cardinalities of Tychonoff ccc spaces with a $G_{\delta}$-diagonal exists. (An answer to J. Ginsburg and R. G. Woods question.) Comment. Math. Univ. Carolinae 25 (1984), 731-746. | MR

[4] J. GINSBURG R. G. WOODS: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Amer. Math. Soc. 64 (1977), 357-360. | MR

[5] V. V. USPENSKIJ: A large $F_{\sigma}$-discrete Fréchet space having the Souslin property. Comment. Math. Univ. Carolinae 25 (1984), 257-260. | MR