Convex sets and Harnack inequality
Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 2, pp. 359-370
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1986_27_2_a13,
author = {Keselman, D. G.},
title = {Convex sets and {Harnack} inequality},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {359--370},
year = {1986},
volume = {27},
number = {2},
mrnumber = {857554},
zbl = {0636.46009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a13/}
}
Keselman, D. G. Convex sets and Harnack inequality. Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 2, pp. 359-370. http://geodesic.mathdoc.fr/item/CMUC_1986_27_2_a13/
[1] CONSTANTINESCU C., CORNEA A.: Potential Theory on Harmonic Spaces. Springer-Verlag, Berlin, 1972. | MR | Zbl
[2] BEAR H. S.: Ordered Gleason parts. Pacific Journal of Mathematics 62 (1976), 337-349. | MR | Zbl
[3] ALFSEN E. M.: Compact Convex Sets and Boundary Integrals. Springer Verlag, Berlin, 1971. | MR | Zbl
[4] KESELMAN D. G.: On some problems of Choquet theory connected with potential theory. Proceedings of the 12-th winter school on abstract analysis, Srní, 15-29 January, 1984, Section of analysis. Supplemento ai Rendiconti del Circolo Matematico di Palermo, serie II, N5 (1984), 73-81. | MR