Stability and saddle-point property for a linear autonomous functional parabolic equation
Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 1, pp. 87-101 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34K20, 34K30, 35G10, 35K25, 35R10, 47D05
@article{CMUC_1986_27_1_a7,
     author = {Milota, Jaroslav},
     title = {Stability and saddle-point property for a linear autonomous functional parabolic equation},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {87--101},
     year = {1986},
     volume = {27},
     number = {1},
     mrnumber = {843423},
     zbl = {0606.35081},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a7/}
}
TY  - JOUR
AU  - Milota, Jaroslav
TI  - Stability and saddle-point property for a linear autonomous functional parabolic equation
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1986
SP  - 87
EP  - 101
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a7/
LA  - en
ID  - CMUC_1986_27_1_a7
ER  - 
%0 Journal Article
%A Milota, Jaroslav
%T Stability and saddle-point property for a linear autonomous functional parabolic equation
%J Commentationes Mathematicae Universitatis Carolinae
%D 1986
%P 87-101
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a7/
%G en
%F CMUC_1986_27_1_a7
Milota, Jaroslav. Stability and saddle-point property for a linear autonomous functional parabolic equation. Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 1, pp. 87-101. http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a7/

[1] BLASIO di G., KUNISH K., SINASTRARI E.: Stability for abstract linear functional differential equations. preprint, Universität Graz, 1984.

[2] BROWDER F. E.: On the spectral theory of elliptic differential operators I. Math. Ann. 142 (1961), 22-130. | MR | Zbl

[3] COLEMAN B. D., MIZEL V. J.: Norms and semigroups in the theory of fading memory. Arch. Rat. Mech. Anal. 23 (1966), 87-123. | MR

[4] FITZGIBBON W. E.: Nonlinear Volterra equations with infinite delay. Monatsh. Math. 84 (1972), 275-288. | MR

[5] FRIEDMAN A.: Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969. | MR | Zbl

[6] HALE J.: Theory of Functional Differential Equations. Appl. Math. Sciences, Vol. 3, Springer - Verlag, 1977. | MR | Zbl

[7] HALE J. K., KATO J.: Phase space tor retarded equations with infinite delay. Funkcial. Ekvac. 21 (1978),11-41. | MR

[8] HENRY D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. No 840, Springer-Verlag, 1981. | MR | Zbl

[9] HILLE E., PHILLIPS R. S.: Functional Analysis and Semigroups. Amer. Math. Soc. Providence, 1957. | MR | Zbl

[10] KAPPEL F., SCHAPPACHER W.: Some considerations to the fundamental theory of infinite delay equations. J. Diff. Eqs. 37 (1980), 141-183. | MR | Zbl

[11] KATO T.: Perturbation Theory for Linear Operators. Springer-Verlag, 1966. | MR | Zbl

[12] KUNISH K., SCHAPPACHER W.: Necessary conditions for partial differential equations with delay to generate $C_0$ - semigroup. J. Diff. Eqs. 50 (1983), 49-79. | MR

[13] NAITO T.: On linear autonomous retarded equations with an abstract phase space for infinite delay. J. Diff. Eqs. 33 (1979), 74-91. | MR | Zbl

[14] NUSSBAUM R.: The radius of the essential spectrum. Duke Math. J. 37 (1970), 473-478. | MR | Zbl

[15] SCHUMACHER K.: On the resolvent of linear nonautonomous partial functional differential equations. preprint No 247, Universität Heidelberg, 1984. | MR

[16] SMULYAN Yu. L.: Compact perturbation of operators. (in Russian), Doklady Akad. Nauk SSSR 101 (1955), 35-38.