The monotone limit convergence theorem for elementary functions with values in a vector lattice
Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 1, pp. 53-67 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28B15
@article{CMUC_1986_27_1_a4,
     author = {Mali\v{c}k\'y, Peter},
     title = {The monotone limit convergence theorem for elementary functions with values in a vector lattice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {53--67},
     year = {1986},
     volume = {27},
     number = {1},
     mrnumber = {843420},
     zbl = {0608.28004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a4/}
}
TY  - JOUR
AU  - Maličký, Peter
TI  - The monotone limit convergence theorem for elementary functions with values in a vector lattice
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1986
SP  - 53
EP  - 67
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a4/
LA  - en
ID  - CMUC_1986_27_1_a4
ER  - 
%0 Journal Article
%A Maličký, Peter
%T The monotone limit convergence theorem for elementary functions with values in a vector lattice
%J Commentationes Mathematicae Universitatis Carolinae
%D 1986
%P 53-67
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a4/
%G en
%F CMUC_1986_27_1_a4
Maličký, Peter. The monotone limit convergence theorem for elementary functions with values in a vector lattice. Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 1, pp. 53-67. http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a4/

[1] JAMESON G.: Ordered Linear Spaces. Berlin 1970. | MR | Zbl

[2] PFANZAGL J., PIERLO W.: Compact systems of sets. Berlin 1966. | MR | Zbl

[3] RIEČAN B.: O prodolženii operatorov so značeniami v linejnych poluuporiadočennych prostranstvach. Čas. Pěst. Mat. 93 (1968), 459-471. | MR

[4] SCHAEFER H. H.: Topologičeskije vektornyje prostranstva. Moskva 1971.

[5] ŠIPOŠ J.: Integration in partially ordered linear spaces. Math. Slovaca 31 (1981), 39-51. | MR

[6] WRIGHT J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier 21, Fasc. 4 (1971), 65-85. | MR | Zbl

[7] BOURBAKI N.: Integrirovanije. Moskva 1977.