The monotone limit convergence theorem for elementary functions with values in a vector lattice
Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 1, pp. 53-67
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1986_27_1_a4,
author = {Mali\v{c}k\'y, Peter},
title = {The monotone limit convergence theorem for elementary functions with values in a vector lattice},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {53--67},
year = {1986},
volume = {27},
number = {1},
mrnumber = {843420},
zbl = {0608.28004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a4/}
}
TY - JOUR AU - Maličký, Peter TI - The monotone limit convergence theorem for elementary functions with values in a vector lattice JO - Commentationes Mathematicae Universitatis Carolinae PY - 1986 SP - 53 EP - 67 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a4/ LA - en ID - CMUC_1986_27_1_a4 ER -
Maličký, Peter. The monotone limit convergence theorem for elementary functions with values in a vector lattice. Commentationes Mathematicae Universitatis Carolinae, Tome 27 (1986) no. 1, pp. 53-67. http://geodesic.mathdoc.fr/item/CMUC_1986_27_1_a4/
[1] JAMESON G.: Ordered Linear Spaces. Berlin 1970. | MR | Zbl
[2] PFANZAGL J., PIERLO W.: Compact systems of sets. Berlin 1966. | MR | Zbl
[3] RIEČAN B.: O prodolženii operatorov so značeniami v linejnych poluuporiadočennych prostranstvach. Čas. Pěst. Mat. 93 (1968), 459-471. | MR
[4] SCHAEFER H. H.: Topologičeskije vektornyje prostranstva. Moskva 1971.
[5] ŠIPOŠ J.: Integration in partially ordered linear spaces. Math. Slovaca 31 (1981), 39-51. | MR
[6] WRIGHT J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier 21, Fasc. 4 (1971), 65-85. | MR | Zbl
[7] BOURBAKI N.: Integrirovanije. Moskva 1977.