@article{CMUC_1985_26_4_a2,
author = {Swartz, Charles},
title = {The {Farkas} lemma of {Glover}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {651--654},
year = {1985},
volume = {26},
number = {4},
mrnumber = {831800},
zbl = {0584.90073},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a2/}
}
Swartz, Charles. The Farkas lemma of Glover. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 4, pp. 651-654. http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a2/
[1] B. GLOVER: A generalized Farkas Lemma with applications to quasi-differentiable programming. Zeit. Oper. Res. 26 (1982), 125-141. | MR
[2] J. HORVATH: Topological Vector Spaces and Distributions. Addison-Wesley, Reading, Mass., 1966. | MR | Zbl
[3] S. KURCYUSZ: On the existence and nonexistence of Lagrange multipliers in Banach spaces. J. Opt. Theory Appl. 20 (1976), 81-110. | MR | Zbl
[4] J-P. FENOT: On the existence of Lagrange multipliers in nonlinear programming in Banach spaces. Lecture Hotes in Control and Information Sciences, 30, 1980, 89-104. | MR
[5] W. SCHIROTZEK: On Farkas type theorems. Comment. Math. Univ. Carolinae 22 (1981), 1-14. | MR | Zbl
[6] C. ZALINESCU: A generalization of the Farkas Lemma and applications to convex programming. J. Math. Anal. Appl. 66 (1978), 651-678. | MR | Zbl
[7] C. ZALINESCU: On an abstract control problem. Numer. Func. Anal. Opt. 2 (1980), 531-542. | MR | Zbl