The approximation of an optimal shape control problem governed by a variational inequality with flux cost functional
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 4, pp. 771-788 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49A22, 49A29, 49D05
@article{CMUC_1985_26_4_a13,
     author = {Haslinger, Jaroslav and Lov{\'\i}\v{s}ek, J\'an},
     title = {The approximation of an optimal shape control problem governed by a variational inequality with flux cost functional},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {771--788},
     year = {1985},
     volume = {26},
     number = {4},
     mrnumber = {831811},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a13/}
}
TY  - JOUR
AU  - Haslinger, Jaroslav
AU  - Lovíšek, Ján
TI  - The approximation of an optimal shape control problem governed by a variational inequality with flux cost functional
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 771
EP  - 788
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a13/
LA  - en
ID  - CMUC_1985_26_4_a13
ER  - 
%0 Journal Article
%A Haslinger, Jaroslav
%A Lovíšek, Ján
%T The approximation of an optimal shape control problem governed by a variational inequality with flux cost functional
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 771-788
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a13/
%G en
%F CMUC_1985_26_4_a13
Haslinger, Jaroslav; Lovíšek, Ján. The approximation of an optimal shape control problem governed by a variational inequality with flux cost functional. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 4, pp. 771-788. http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a13/

[1] HASLINGER J., LOVÍŠEK J.: Domain optimization problem governed by a state inequality with a "flux" cost functional. to appear.

[2] HASLIHGER J., WEITTAANMÄKI P.: On optimal shape design of systems governed by mixed Dirichlet-Signorini boundary value problems. to appear.

[3] BEGIS D., GLOWINSKI R.: Application de la méthods des éléments finis à l'approximation d'un problème de domains optimal. Appl. Math. Optim. 2 (1975), 130-159. | MR

[4] SOKOLOWSKI J.: Sensitivity analysis of a class of variational inequalities, in Optimization of Distributed parameter structures. ed. by E. J. Haug end J. Ceaf NATO Advanced study Institutes Series, Series E, No. 49, Sijthoff & Nordhoff, Alphen san den Rijn, 1981, 1600-1605. | MR

[5] BENDSOE M. P., NIELS OLHOFF, SOKOLOWSKI J.: Sensitivity analysis of problems of elasticity with unilateral constraints. Preprint Matematisk Institute, Danmarks Tekniske Højskole, Mat.-Report No 1984-10. | MR