Simple estimators of the parameters of generalized Tukey's $\lambda$-family
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 4, pp. 727-743 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62E20, 62G05, 62G30
@article{CMUC_1985_26_4_a10,
     author = {Hu\v{s}kov\'a, Marie},
     title = {Simple estimators of the parameters of generalized {Tukey's} $\lambda$-family},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {727--743},
     year = {1985},
     volume = {26},
     number = {4},
     mrnumber = {831808},
     zbl = {0584.62059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a10/}
}
TY  - JOUR
AU  - Hušková, Marie
TI  - Simple estimators of the parameters of generalized Tukey's $\lambda$-family
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 727
EP  - 743
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a10/
LA  - en
ID  - CMUC_1985_26_4_a10
ER  - 
%0 Journal Article
%A Hušková, Marie
%T Simple estimators of the parameters of generalized Tukey's $\lambda$-family
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 727-743
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a10/
%G en
%F CMUC_1985_26_4_a10
Hušková, Marie. Simple estimators of the parameters of generalized Tukey's $\lambda$-family. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 4, pp. 727-743. http://geodesic.mathdoc.fr/item/CMUC_1985_26_4_a10/

[1] Akahira M., Takeuchi K.: Asymptotic efficiency of statistical estimators: concepts and higher order asymptotic efficiency. Lecture Notes in Statistics 7, Springer-Verlag, 1981. | MR | Zbl

[2] Chan L. K., Rhodin L. S.: Robust estimation of location using optimally chosen sample quantiles. Technometrics 22, 1980, 225-237. | Zbl

[3] Filliben J. J.: Simple and robust estimation of the location parameter of a symmetric distribution. Hi. D. dissertation, Princeton University, Princeton, N.Y., 1969.

[4] Joiner B. L., Rosenblatt J. R.: Some properties of the range in samples from Tukey's symmetric X -distributions. J. Amer. Statist. Assoc. 66, 1971, 394-399.

[5] Jones D. H.: An efficient adaptive distribution-free test for location. J. Amer. Statist. Assoc. 74, 1979, 822-828. | MR | Zbl

[6] Ramberg J. S., Schmeiser B. W.: An approximate method for generating symmetric random variables. Comm. of the ACM, 15, 1972, 987-990. | MR | Zbl

[7] Ramberg J. S., Schmeiser B. W.: An approximative method for generating asymmetric random variables. Comm. of the ACM, 17, 1974, 78-82. | MR

[8] Ramberg J. S., Tadikamalla P. R., Dudewicz E. J., Mykytka E. F.: A probability distribution and its uses in fitting data. Technometrics 21, 1979, 201-214. | Zbl

[9] Tukey J. W.: The practical relationship between the common transformations of percentages or counts and of amounts. Technical Report # 36, Statistical Research Group, Princeton University, Princeton, N.Y., 1960.