Special lattices of compactifications
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 515-523 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54C45, 54D35, 54D40, 54G05, 54G10
@article{CMUC_1985_26_3_a6,
     author = {Caterino, Alessandro},
     title = {Special lattices of compactifications},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {515--523},
     year = {1985},
     volume = {26},
     number = {3},
     mrnumber = {817824},
     zbl = {0587.54041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a6/}
}
TY  - JOUR
AU  - Caterino, Alessandro
TI  - Special lattices of compactifications
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 515
EP  - 523
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a6/
LA  - en
ID  - CMUC_1985_26_3_a6
ER  - 
%0 Journal Article
%A Caterino, Alessandro
%T Special lattices of compactifications
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 515-523
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a6/
%G en
%F CMUC_1985_26_3_a6
Caterino, Alessandro. Special lattices of compactifications. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 515-523. http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a6/

[C] R. CHANDLER: Hausdorff compactifications. Dekker, New York (1976). | MR | Zbl

[FV] J. VISLISENI J. FLEKSMOIER: The power and the structure of the lattice of all compact extensions of a completely regular space. Soviet Math. 6 (1965), 1423-1425.

[GJ] L. GILLMAN M. JERISON: Rings of continuous functions. Van Nostrand, Princeton (I960). | MR

[K] M. R. KIRCH: A class of spaces in which compact sets are finite. Amer. Math. Monthly 76 (1969), 42. | MR | Zbl

[M] K. MAGILL: The lattice of compactifications of a locally compact space. Proc. Lond. Math. Soc. 18 (1968), 231-244. | MR | Zbl

[S] P. L. SHARMA: The Lindelöff property in MI-spaces. Ill. Journ. of Math. 25 (1981), 644-648. | MR

[T] F. C. TZUNG: Sufficient conditions for the set of Hausdorff compactifications to be a lattice. Pacif. J. Math. 77 (1978), 565-573. | MR | Zbl

[U] Y. UNLU: Lattices of compactifications of Tychonoff spaces. Gen. Top. and its appl. 9 (1978), 41-57. | MR