A constructive proof of the Tychonoff's theorem for locales
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 619-630 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03E25, 03G30, 54B10, 54D30, 54F05, 54H99
@article{CMUC_1985_26_3_a14,
     author = {K\v{r}{\'\i}\v{z}, Igor},
     title = {A constructive proof of the {Tychonoff's} theorem for locales},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {619--630},
     year = {1985},
     volume = {26},
     number = {3},
     mrnumber = {817832},
     zbl = {0661.54027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a14/}
}
TY  - JOUR
AU  - Kříž, Igor
TI  - A constructive proof of the Tychonoff's theorem for locales
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 619
EP  - 630
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a14/
LA  - en
ID  - CMUC_1985_26_3_a14
ER  - 
%0 Journal Article
%A Kříž, Igor
%T A constructive proof of the Tychonoff's theorem for locales
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 619-630
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a14/
%G en
%F CMUC_1985_26_3_a14
Kříž, Igor. A constructive proof of the Tychonoff's theorem for locales. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 619-630. http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a14/

[1] J. BÉNABOU: Treillis locaux et paratopologies. Séminaire Ehresmann 1 (1957-58), exposé 2. | MR

[2] B. BANASCHEWSKI C. J. MULVEY: Stone-Čech compactification of locales, I. Houston J. Math. 6 (1980), 301-312. | MR

[3] C. H. DOWKER D. PAPERT: Quotient frames and subspaces. Proc. Lond. Math. Soc. 16 (1966), 275-296. | MR

[4] C. H. DOWKER D. PAPERT: On Urysohn's lemma. General Topology and its relations to Modern Analysis and Algebra II, Prague 1966, 111-114. | MR

[5] C. H. DOWKER D. STRAUSS: Sums in the category of frames. Houston J. Math. 3 (1976), 17-32. | MR

[6] J. R. ISBELL: Atomless parts of spaces. Math. Scand. 31 (1972), 5-32. | MR | Zbl

[7] P. T. JOHNSTONE: The point of pointless topology. Bull. Am. Math. Soc. 8 (1983), 41-43. | MR | Zbl

[8] P. T. JOHNSTONE: Tychonoff's theorem without the axiom of ohoice. Fund. Math. 113 (1981), 21-35. | MR

[9] A. JOYAL M. TIERNEY: An extension of the Galois Theory of Grothendieck. preprint. | MR

[10] J. L. KELLEY: The Tychonoff product theorem implies the axiom of ohoice. Fund. Math. 37 (1950), 75-76. | MR

[11] H. SIMMONS: A framework for topology. Proc. Wroclaw Logic Conference 1977, North-Holland, 1978, 239-251. | MR

[12] A. N. TYCHONOFF: Über die topologische Erweiterung von Räumen. Math. Ann. 102 (1930), 544-561. | MR