Extension of differentiable functions
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 597-609 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 26A21, 26B05
@article{CMUC_1985_26_3_a12,
     author = {Aversa, Vincenzo and Laczkovich, M. and Preiss, David},
     title = {Extension of differentiable functions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {597--609},
     year = {1985},
     volume = {26},
     number = {3},
     mrnumber = {817830},
     zbl = {0583.26003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a12/}
}
TY  - JOUR
AU  - Aversa, Vincenzo
AU  - Laczkovich, M.
AU  - Preiss, David
TI  - Extension of differentiable functions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 597
EP  - 609
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a12/
LA  - en
ID  - CMUC_1985_26_3_a12
ER  - 
%0 Journal Article
%A Aversa, Vincenzo
%A Laczkovich, M.
%A Preiss, David
%T Extension of differentiable functions
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 597-609
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a12/
%G en
%F CMUC_1985_26_3_a12
Aversa, Vincenzo; Laczkovich, M.; Preiss, David. Extension of differentiable functions. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 597-609. http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a12/

[1] Á. CSÁSZÁR, M. LACZKOVICH: Some remarks on discrete Baire classes. Acta Math. Acad. Sci. Hung. 33 (1979), 51-70. | MR

[2] F. HAUSDORFF: Set theory. Chelsea, 1962. | MR

[3] V. JARNÍK: Sur l'extension du domaine de définition des fonctions d'une variable qui laisse intacte la dérivabilité de la fonction. Bull. International de l'Académie des soienoes de Boheme, 1923.

[4] G. PETRUSKA M. LACZKOVICH: Baire 1 functions, approximately continuous functions and derivatives. Acta Math. Acad. Sci. Hung. 25 (1974), 189-212. | MR

[5] L. E. SNYDER: Stolz angle convergence in metric spaces. Pacific J. Math. 22 (1967), 515-522. | MR | Zbl