1-perfect codes over self-complementary graphs
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 589-595 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C99, 94B25
@article{CMUC_1985_26_3_a11,
     author = {Kratochv{\'\i}l, Jan},
     title = {1-perfect codes over self-complementary graphs},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {589--595},
     year = {1985},
     volume = {26},
     number = {3},
     mrnumber = {817829},
     zbl = {0576.94021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a11/}
}
TY  - JOUR
AU  - Kratochvíl, Jan
TI  - 1-perfect codes over self-complementary graphs
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 589
EP  - 595
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a11/
LA  - en
ID  - CMUC_1985_26_3_a11
ER  - 
%0 Journal Article
%A Kratochvíl, Jan
%T 1-perfect codes over self-complementary graphs
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 589-595
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a11/
%G en
%F CMUC_1985_26_3_a11
Kratochvíl, Jan. 1-perfect codes over self-complementary graphs. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 589-595. http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a11/

[1] ASTOLA J.: On perfect codes in the Lee-metric. Ann. Univ. Turku Ser. A I No. 176 (1978), 56. | MR | Zbl

[2] BEST M. R.: Perfect codes hardly exist. IEEE Trans. Inform. Theory, Vol. IT-29, No. 3 (1983), 349-351. | MR | Zbl

[3] BIGGS N.: Perfect codes in graphs. J. Comb. Theory Ser. B 15 (1973), 289-296. | MR | Zbl

[4] KRATOCHVÍL J.: Perfect codes over graphs. (submitted to J. Comb. Theory Ser. B). | MR

[5] POST K. A.: Nonexistence theorems on perfect Lee codes over large alphabets. Information and Control, Vol. 29 (1975), 369-380. | MR | Zbl

[6] SMITH D. H.: Perfect codes in the graphs $0_k$ and $L(0_k)$. Glasgow Math. J. (1980), 169-172. | MR

[7] TIETÄVÄINEN A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math., Vol. 24 (1973), No. 1, 88-96. | MR