Equivalence of some geometric and related results of nonlinear functional analysis
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 443-454 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46B20, 46B99, 47H10, 47H15, 47J05
@article{CMUC_1985_26_3_a1,
     author = {Dane\v{s}, Josef},
     title = {Equivalence of some geometric and related results of nonlinear functional analysis},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {443--454},
     year = {1985},
     volume = {26},
     number = {3},
     mrnumber = {817819},
     zbl = {0656.47050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a1/}
}
TY  - JOUR
AU  - Daneš, Josef
TI  - Equivalence of some geometric and related results of nonlinear functional analysis
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 443
EP  - 454
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a1/
LA  - en
ID  - CMUC_1985_26_3_a1
ER  - 
%0 Journal Article
%A Daneš, Josef
%T Equivalence of some geometric and related results of nonlinear functional analysis
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 443-454
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a1/
%G en
%F CMUC_1985_26_3_a1
Daneš, Josef. Equivalence of some geometric and related results of nonlinear functional analysis. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 3, pp. 443-454. http://geodesic.mathdoc.fr/item/CMUC_1985_26_3_a1/

[1] BRÉZIS H., BROWDER F. E.: A general prinoiple on ordered sest in nonlinear functional analysis. Advances in Math. 21 (1976), 355-364. | MR

[2] CARISTI J.: Fixed point theorms for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | MR

[3] CARISTI J., KIRK W. A.: Mapping theorems in metric and Banach spaces. Bull. Acad. Polon. Sci. 23 (1975), 891-894. | MR | Zbl

[4] DANEŠ J.: A geometric theorem useful in nonlinear functional analysis. Boll. Un. Mat. Ital. 6 (1972), 369-375. | MR

[5] EKELAND I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. | MR | Zbl

[6] ZABREĬKO P. P., KRASNOSELSKIĬ M. A.: On the solvability of nonlinear operator equations. Funkcional. Anal. i Přilož. 5 (1971), 42-44 (in Russian). | MR