A fixed point theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 2, pp. 299-308
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1985_26_2_a9,
author = {Le Van Hot},
title = {A fixed point theorem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {299--308},
year = {1985},
volume = {26},
number = {2},
mrnumber = {803926},
zbl = {0606.47064},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a9/}
}
Le Van Hot. A fixed point theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 2, pp. 299-308. http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a9/
[1] H. BRÉZIS F. BROWDER: A general ordering principle in nonlinear functional analysis. Advances in Math. 21 (1976), 355-364. | MR
[2] F. BRØNSTED: Fixed points and partial orders. Proc. Amer. Math. Soc. 60 (1978), 365-366. | MR
[3] J. CARISTI: Fixed point theorems for mapping satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | MR
[4] I. EKELAND: Nonconvex minimization problems. Bull. Amer. Math. Soc. (New Series) 1 (1979), 443-474. | MR | Zbl
[5] B. FUCHSTEINER: Iterations and fixed points. Pacific J. Math. 68 (1977), 73-79.
[6] H. SCHAEFER: Banach lattices and positive operators. Springer-Verlag, New York (1974). | MR | Zbl