A fixed point theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 2, pp. 299-308 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47H10, 47J05, 47J25
@article{CMUC_1985_26_2_a9,
     author = {Le Van Hot},
     title = {A fixed point theorem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {299--308},
     year = {1985},
     volume = {26},
     number = {2},
     mrnumber = {803926},
     zbl = {0606.47064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a9/}
}
TY  - JOUR
AU  - Le Van Hot
TI  - A fixed point theorem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 299
EP  - 308
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a9/
LA  - en
ID  - CMUC_1985_26_2_a9
ER  - 
%0 Journal Article
%A Le Van Hot
%T A fixed point theorem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 299-308
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a9/
%G en
%F CMUC_1985_26_2_a9
Le Van Hot. A fixed point theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 2, pp. 299-308. http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a9/

[1] H. BRÉZIS F. BROWDER: A general ordering principle in nonlinear functional analysis. Advances in Math. 21 (1976), 355-364. | MR

[2] F. BRØNSTED: Fixed points and partial orders. Proc. Amer. Math. Soc. 60 (1978), 365-366. | MR

[3] J. CARISTI: Fixed point theorems for mapping satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | MR

[4] I. EKELAND: Nonconvex minimization problems. Bull. Amer. Math. Soc. (New Series) 1 (1979), 443-474. | MR | Zbl

[5] B. FUCHSTEINER: Iterations and fixed points. Pacific J. Math. 68 (1977), 73-79.

[6] H. SCHAEFER: Banach lattices and positive operators. Springer-Verlag, New York (1974). | MR | Zbl