A simple geometric proof of a theorem on $M_n$
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 2, pp. 233-239
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1985_26_2_a2,
author = {T\r{u}ma, Ji\v{r}{\'\i}},
title = {A simple geometric proof of a theorem on $M_n$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {233--239},
year = {1985},
volume = {26},
number = {2},
mrnumber = {803919},
zbl = {0567.08001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a2/}
}
Tůma, Jiří. A simple geometric proof of a theorem on $M_n$. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 2, pp. 233-239. http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a2/
[1] R. W. QUACKENBUSH: A note on a problem of Goralčík. Coll. Math. Soc. János Bolyai, Vol. 17. Contributions to Universal Algebra, Szeged (Hungary) (1975), 363-364. | MR
[2] H. WERNER: Which partition lattices are congruence lattices?. Coll. Math. Soc. János Bolyai, Vol. 14. Lattice Theory, Szeged (Hungary) (1974), 433-453. | MR