Polyadic spaces of arbitrary compactness numbers
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 2, pp. 353-361 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03E05, 04A20, 54D30
@article{CMUC_1985_26_2_a16,
     author = {Bell, Murray G.},
     title = {Polyadic spaces of arbitrary compactness numbers},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {353--361},
     year = {1985},
     volume = {26},
     number = {2},
     mrnumber = {803933},
     zbl = {0587.54039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a16/}
}
TY  - JOUR
AU  - Bell, Murray G.
TI  - Polyadic spaces of arbitrary compactness numbers
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 353
EP  - 361
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a16/
LA  - en
ID  - CMUC_1985_26_2_a16
ER  - 
%0 Journal Article
%A Bell, Murray G.
%T Polyadic spaces of arbitrary compactness numbers
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 353-361
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a16/
%G en
%F CMUC_1985_26_2_a16
Bell, Murray G. Polyadic spaces of arbitrary compactness numbers. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 2, pp. 353-361. http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a16/

[1] D. Amir J. Lindenstrauss: The structure of weakly compact subsets in Banach spaces. Ann. of Math. 88, 1968, 35-46. | MR

[2] M. G. Bell: Two boolean algebras with extreme cellular and compactness properties. Can. J. of Math., Vol. XXXV, No. 5, 1983, 824-838. | MR | Zbl

[3] M. G. Bell: Supercompactness of compactifications and hyperspaces. Trans. A.M.S., Vol. 281, No. 2, 1984, 717-724. | MR | Zbl

[4] M. G. Bell J. Ginsburg: Compact spaces and spaces of maximal complete subgraphs. Trans. A.M.S., Vol. 283, No. 1, 1984, 329-338. | MR

[5] M. G. Bell J. van Mill: The compactness number of a compact topological space I. Fund. Math. CVI, 1980, 163-173. | MR

[6] J. de Groot: Supercompactness and superextensions, in Contributions to extension theory of topological structure. Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. | MR

[7] C. F. Mill J. van Mill: A nonsupercompact continuous image of a supercompact space. Houston J. Math. 5, 1979, 241-247. | MR

[8] S. Mrowka: Mazur theorem and $m$-adic spaces. Bull. Acad. Polonaise Sci. XVIII No. 6, 1970, 299-305. | MR | Zbl

[9] M. Hušek: Special Classes of Compact Spaces. Lecture Notes in Math. 719 Springer Verlag 1979, 167-175. | MR