@article{CMUC_1985_26_2_a1,
author = {Turinici, Mihai},
title = {A fixed point result of {Seghal-Smithson} type},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {221--232},
year = {1985},
volume = {26},
number = {2},
mrnumber = {803918},
zbl = {0586.54050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a1/}
}
Turinici, Mihai. A fixed point result of Seghal-Smithson type. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 2, pp. 221-232. http://geodesic.mathdoc.fr/item/CMUC_1985_26_2_a1/
[1] M. ALTMAN: Contractor directions, directional contractors and directional contractions for solving equations. Pacific J. Math. 62 (1976), 1-18. | MR | Zbl
[2] H. BRÉZIS F. E. BROWDER: A general principle on ordered sets in nonlinear functional analysis. Adv. in Math. 21 (1976), 355-364. | MR
[3] F. E. BROWDER: Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifold. J. Funct. Anal. (1971), 250-274. | MR
[4] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | MR | Zbl
[5] S. A. HUSAIN V. M. SEHGAL: A remark on a fixed point theorem of Caristi. Math. Japonica 25 (1980), 27-30. | MR
[6] W. A. KIRK J. CARISTI: Mapping theorems in metric and Banach spaces. Bull. Acad. Pol. Sol. (Ser. Sci. Math.) 23 (1975), 891-894. | MR
[7] J.-P. PENOT: A characterisation of tangential regularity. Nonlinear Analysis TMA 5 (1981), 625-643. | MR
[8] V. M. SEHGAL R. E. SMITHSON: A fixed point theorem for weak directional contraction multifunctions. Math. Japonica 25 (1980), 345-348. | MR
[9] M. TURINICI: Mapping theorems via variable drops in Banach spaces. Rend. Ist. Lombardo Sci. Lett. (A) 114 (1980), 164-168. | MR | Zbl
[10] M. TURINICI: A generalization of Brézis-Browder's ordering principle. An. Sti. Univ. "Al. I. Cuza" Iasi (S.I-a) 28 (1982), 11-16. | MR | Zbl
[11] M. TURINICI: Mapping theorems via contractor directions in metrizable locally convex spaces. Bull. Acad. Pol. Sci. (Ser. Sci. Math.) 30 (1982), 161-166. | MR | Zbl
[12] M. TURINICI: A maximality principle on ordered metric spaoes. Rev. Colomb. Mat. 16 (1982), 115-124. | MR