@article{CMUC_1985_26_1_a8,
author = {von Wahl, Wolf},
title = {Local and global existence and behaviour for $t\to \infty$ of solutions of the {Navier-Stokes} equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {151--167},
year = {1985},
volume = {26},
number = {1},
mrnumber = {797298},
zbl = {0575.35074},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a8/}
}
TY - JOUR AU - von Wahl, Wolf TI - Local and global existence and behaviour for $t\to \infty$ of solutions of the Navier-Stokes equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 1985 SP - 151 EP - 167 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a8/ LA - en ID - CMUC_1985_26_1_a8 ER -
%0 Journal Article %A von Wahl, Wolf %T Local and global existence and behaviour for $t\to \infty$ of solutions of the Navier-Stokes equations %J Commentationes Mathematicae Universitatis Carolinae %D 1985 %P 151-167 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a8/ %G en %F CMUC_1985_26_1_a8
von Wahl, Wolf. Local and global existence and behaviour for $t\to \infty$ of solutions of the Navier-Stokes equations. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 1, pp. 151-167. http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a8/
[FK] Fujita H., Kato T.: On the Navier-Stokes initial value problem I. Arch. Rat. Mech. Anal. 16, 269-315 (1964). | MR | Zbl
[FM] Fujiwara D., Morimoto H.: An $L_r$-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 24, 685-700 (1977). | MR | Zbl
[Gi1] Giga Y.: Analyticity of the Semigroup Generated by the Stokes Operator in $L_r$-Spaces. Math. Z. 178, 297-329 (1981). | MR | Zbl
[Gi2] Giga Y.: Domains in $L_r$-spaces of fractional powers of the Stokes operator. to appear in Archive Rat. Mech. Anal.
[GiЗ] Giga Y.: Regularity criteria for weak solutions of the Navier-Stokes system. Preprint. | MR | Zbl
[K] Kato T.: Nonlinear evolution equations in Banach spaces. Proc. Symp. Appl. Math. 17, 50-67, New York: American Mathematical Society 1965. | MR | Zbl
[La] Ladyzhenskaja O.A.: The Mathematical Theory of Viscous Incompressible Flow. New York, London, Paris: Gordon and Breach 1969. | MR
[L] Lions J. L.: Quelques méthodes de résolution des problémes aux limites non linéaires. Paris: Dunod 1969. | MR | Zbl
[M] Masuda K.: On the stability of incompressible viscous fluid motions past objects. J. Math. Soc. Japan 27, 294-327 (1975). | MR | Zbl
[S] Serrin J.: The initial value problem for the Navier-Stokes equations. Nonlinear Problems (R. Langer ed.), 69-98, Madison: The University of Wisconsin press 1963. | MR | Zbl
[So] Sohr H.: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z. 184, 359-376 (1983). | MR | Zbl
[Sol] Solonnikov V. A.: Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8, 467-529 (1977). | Zbl
[SW] Sohr H., Wahl W. von: On the Singular Set and the Uniqueness of Weak Solutions of the Navier-Stokes Equations. Sonderforschungsbereich 72 "Approximation und Optimierung", Universität Bonn. Preprint no. 635 (1984). | MR
[W1] Wahl W. von: Über das Verhalten für $t \rightarrow 0$ der Lösungen nichtlinearer parabolischer Gleichungen, insbesondere der Gleichungen von Navier-Stokes. Sonderforschungsbereich 72 "Approximation und Optiraierung", Universität Bonn. Preprint no. 602 (1983). Berichtigung hierzu. Sonderforschungsbereich 72 "Approxirmation und Optimierung", Universität Bonn. Preprint-Reihe (1983). | MR
[W2] Wahl W. von: Regularity Questions for the Navier-Stokes Equations. Approximation Methods for Navier-Stokes Problems. Proceedings, Paderborn, Germany 1979. Lecture Notes in Mathematics 771 (1900). | MR
[WЗ] Wahl W. von: Regularitätsfragen für die instationären Navier-Stokesschen Gleichungen in höheren Dimensionen. J. Math. Soc. Japan 32, 263-283 (1980). | MR
[W4] Wahl W. von: Regularity of Weak Solutions of the Navier-Stokes Equations. To appear in the Proceedings of the 1983 AMS Summer Institute on Nonlinear Functional Analysis and Applications. Proceedings of Symposia in Pure Mathematics. Am. Math. Soc.: Providence, Rhode Island. | MR