@article{CMUC_1985_26_1_a14,
author = {Tani, Atusi},
title = {Multiphase free boundary problem for the equations of motion of general fluids},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {201--208},
year = {1985},
volume = {26},
number = {1},
mrnumber = {797304},
zbl = {0609.76106},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a14/}
}
TY - JOUR AU - Tani, Atusi TI - Multiphase free boundary problem for the equations of motion of general fluids JO - Commentationes Mathematicae Universitatis Carolinae PY - 1985 SP - 201 EP - 208 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a14/ LA - en ID - CMUC_1985_26_1_a14 ER -
Tani, Atusi. Multiphase free boundary problem for the equations of motion of general fluids. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 1, pp. 201-208. http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a14/
[1] T. Beale: The initial value problem ror the Navier-Stokes equations with a free surface. Comm. Pure Appl. Math., 34 (1981), 359-392. | MR
[2] T. Beale: Long-time regularity of viscous surface waves. Arch. Rat Mech. Anal., 84 (1984), 307-352.
[З] P. Secchi A. Valli: A free boundary problem for compressible viscous fluids. J. reine angew. Math., 341 (1983), 1-31. | MR
[4] B. A. Coлoнникoв: O кpaeвыx зaдaчax для линeйныx пapaбoличecкиx cиcтeм диффepeнциaльныx ypaвнeний oбщeбo видa. Tpyды Maт. йнcт. Cтeклoвa, 83 (1965), 3-162.
[5] B. A. Coлoнникoв: Paзpeшимocть зaдaчи o движeнии вязкoй нecжимaeмoй жидкocти, oгpaничeннoй cвoбoднoй rtoвepxнocтью. Изв. AH, cep. Maт., 41 (1977), 1388-1424. | MR
[6] A. Tani: On the first initial-boundary value problem of compгessible viscous fluid motion. Publ. RIMS, Kyoto Univ., 13 (1977), 193-253.
[7] A. Tani: On the free boundary value problem for compressible viscous fluid motion. J. Math. Kyoto Univ., 21 (1981), 839-859. | MR | Zbl
[8] A. Tani: Two-phase free boundary value problem for compressible viscous fluid motion. to appear in J. Math. Kyoto Univ. | MR
[9] A. Tani: Free boundary pгoblems for the equations of motion of general fluids. to appear in Lecture Note in Num. Appl. Anal.