On the existence of weak solutions of a nonlinear mixed problem for nonhomogeneous fluids in a time dependent domain
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 1, pp. 185-199 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35Q10, 35Q30, 76D05
@article{CMUC_1985_26_1_a13,
     author = {Salvi, Rodolfo},
     title = {On the existence of weak solutions of a nonlinear mixed problem for nonhomogeneous fluids in a time dependent domain},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {185--199},
     year = {1985},
     volume = {26},
     number = {1},
     mrnumber = {797303},
     zbl = {0591.76042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a13/}
}
TY  - JOUR
AU  - Salvi, Rodolfo
TI  - On the existence of weak solutions of a nonlinear mixed problem for nonhomogeneous fluids in a time dependent domain
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 185
EP  - 199
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a13/
LA  - en
ID  - CMUC_1985_26_1_a13
ER  - 
%0 Journal Article
%A Salvi, Rodolfo
%T On the existence of weak solutions of a nonlinear mixed problem for nonhomogeneous fluids in a time dependent domain
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 185-199
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a13/
%G en
%F CMUC_1985_26_1_a13
Salvi, Rodolfo. On the existence of weak solutions of a nonlinear mixed problem for nonhomogeneous fluids in a time dependent domain. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 1, pp. 185-199. http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a13/

[1] H. FUJITA N. SAUER: On existence of weak solutions of the Navier-Stokes equations in regions with moving boundary. J. Fac. Sci. Univ. Tokyo Sect. I A 17 (1970), 403-420. | MR

[2] A. INOUE M. WAKIMOTO: On existence of solutions of the Navier-Stokes equations in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. I A 24 (1977), 303-319. | MR

[3] O. A. LADYZENSKAJA V. A. SOLONNIKOV N. N. URAL'CEVA: Linear and quasilinear equations of parabolic type. vol. 23 Translation of Mathematical Monographs. | MR

[4] H. MORIMOTO: On existence of periodic weak solutions of the Navier-Stokes equations in regions with periddically moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. I A 18 (1971), 499-524. | MR

[5] T. MYAKAWA Y. TERAMOTO: Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain. Hiroshima Math. J. 12 (1982), 513-528. | MR

[6] J. NEČAS: Les méthodes directes en théorie des équations elliptiques. Editions de l'Académie Tchécoslovaque des Sciences, Pi-ague 1967. | MR

[7] L. NIRENBERG: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, ser. III, XIII (1959), 115-162. | MR | Zbl

[8] M. OTANI Y. YAMADA: On the Navier-Stokes equations in a non-cylindrical domains: An approach by subdifferential operator theory. J. Pac. Sci. Univ. Tokyo Sect. I A 25 (1978), 185-204. | MR

[9] R. SALVI: On existence of weak solutions of a non linear mixed problem for Navier-Stokes equations in a time dependent domain. to be published.

[10] J. SIMON: Ecoulement d'un fluide non-homogène avec densité initiale s'annullant. C.R. Acad. Sci. 287 (1978), 1009-1012. | MR