Semilinear parabolic systems
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 1, pp. 3-21 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35A05, 35A07, 35B65, 35K60
@article{CMUC_1985_26_1_a1,
     author = {Amann, Herbert},
     title = {Semilinear parabolic systems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {3--21},
     year = {1985},
     volume = {26},
     number = {1},
     mrnumber = {797291},
     zbl = {0576.35067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a1/}
}
TY  - JOUR
AU  - Amann, Herbert
TI  - Semilinear parabolic systems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 3
EP  - 21
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a1/
LA  - en
ID  - CMUC_1985_26_1_a1
ER  - 
%0 Journal Article
%A Amann, Herbert
%T Semilinear parabolic systems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 3-21
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a1/
%G en
%F CMUC_1985_26_1_a1
Amann, Herbert. Semilinear parabolic systems. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a1/

[1] ALIKAKOS N. D.: $L^p$ bounds of solutions of reaction-diffusion equations. Comm. in Partial Diff. Equat. 4 (1979), 827-868. | MR

[2] ALIKAKOS N. D.: Quantitative maximum principles and strongly coupled gradient-like reaction-diffusion systems. Proc. Royal Soc. Edinburgh 94 (1983), 265-286. | MR | Zbl

[3] AMANN H.: Existence and regularity for semilinear parabolic evolution equations. To appear. | MR | Zbl

[4] AMANN H.: Global existence for semilinear parabolic systems. In preparation. | Zbl

[5] BROWDER F. E.: On the spectral theory of elliptic operastors. I. Math. Annalen 141 (1961), 22-130. | MR

[6] COSNER CH.: Pointwise a priori bounds for strongly coupled semi-linear systems of parabolic partial differential equations. Indiana Univ. Math. J. 30 (1981), 607-620. | MR | Zbl

[7] FRIEDMAN A.: Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969. | MR | Zbl

[8] KATO T., TANABE H.: On the abstract evolution equation. Osaka Math. J. 14 (1962), 107-133. | MR | Zbl

[9] KIELHOEFER H.: Global solutions of semi linear evolution equations satisfying an energy inequality. J. Diff. Equat. 36 (1980), 188-222. | MR

[10] LIONS J. L., MAGENES E.: Non-Homogeneous Boundary Value Problems and Applications I. Springer Verlag, Berlin, 1972.

[11] PECHER H., von WAHL W.: Klassische Lösungen in Grossen semilinearer parabolischer Differentialgleichungen. Math. Z. 145 (1975), 255-265. | MR

[12] ROTHE F.: Uniform bounds from bounded $L_p$ -functionals in reaction-diffusion equations. J. Diff. Equat. 45 (1982), 207-233. | MR

[13] ROTHE F.: A priori estimates, global existence and asymptotic behaviour for weakly ooupled systems of reaction-diffusion equations. Habilitationsschrift, Univ. Tübingen, 1983.

[14] SOBOLEVSKII P.E.: Equations of parabolic type in a Banaoh space. Amer. Math. Soc. Transl., Ser. 2, 49 (1966), 1-62.

[15] von WAHL W.: Lineare und semilineare parabolisohe Differentialgleichungen in Räumen hölderstetiger Funktionen. Abh. Math. Sen. Univ. Hamburg 43 (1975), 234-262. | MR

[16] von WAHL W.: Semilinear elliptic and parabolic equations of arbitrary order. Proc. Royal Soc. Edinburgh, Sect. A, 78 (1978), 193-207. | MR | Zbl

[17] YAGI A.: On the abstract linear evolution equations in Banach spaces. J. Math. Soc Japan 28 (1976), 290-303. | MR | Zbl