On bounded solutions of a linear differential equation with a nonlinear perturbation
Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 4, pp. 635-645 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A34, 34C11, 34G20
@article{CMUC_1984_25_4_a4,
     author = {Rzepecki, Bogdan},
     title = {On bounded solutions of a linear differential equation with a nonlinear perturbation},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {635--645},
     year = {1984},
     volume = {25},
     number = {4},
     mrnumber = {782013},
     zbl = {0558.34052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a4/}
}
TY  - JOUR
AU  - Rzepecki, Bogdan
TI  - On bounded solutions of a linear differential equation with a nonlinear perturbation
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1984
SP  - 635
EP  - 645
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a4/
LA  - en
ID  - CMUC_1984_25_4_a4
ER  - 
%0 Journal Article
%A Rzepecki, Bogdan
%T On bounded solutions of a linear differential equation with a nonlinear perturbation
%J Commentationes Mathematicae Universitatis Carolinae
%D 1984
%P 635-645
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a4/
%G en
%F CMUC_1984_25_4_a4
Rzepecki, Bogdan. On bounded solutions of a linear differential equation with a nonlinear perturbation. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 4, pp. 635-645. http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a4/

[1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. | MR | Zbl

[2] M. BOUDOURIDES: On bounded solutions of nonlinear ordinary differential equations. Comment. Math. Univ. Carolinae 22 (1981), 15-26. | MR | Zbl

[3] J. DANEŠ: On densifying and related mappings and their application in nonlinear functional analysis. Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56. | MR

[4] K. DEIMLING: Ordinary differential equations in Banach spaces. Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. | MR | Zbl

[5] K. KURATOWSKI: Sur les espaces complete. Fund. Math. 15 (1930), 301-309.

[6] R. MARTIN: Nonlinear operators and differential equations in Banach spaces. Wiley Publ., New York 1976. | MR | Zbl

[7] J. L. MASSERA J. J. SCHÄFFER: Linear differential equations and functional analysis. Ann. Math. 67 (1958), 517-573. | MR

[8] J. L. MASSERA J. J. SCHÄFFER: Linear differential equations and functional spaces. Academic Press, New York 1966. | MR

[9] B. RZEPECKI: Remarks on Schauder's fixed point principle and its applications. Bull. Acad. Polon. Sci., Sér. Math, 27 (1979), 473-480. | MR | Zbl

[10] B. N. SADOVSKII: Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 86-144. | MR

[11] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. | MR | Zbl

[12] S. SZUFLA: On the boundedness of solutions of non-linear differential equations in Banach spaces. Comment. Math, 21 (1979), 381-387. | MR | Zbl