@article{CMUC_1984_25_4_a13,
author = {Shakhmatov, Dmitri\u{i} B.},
title = {No upper bound for cardinalities of {Tychonoff} {C.C.C.} spaces with a $G_\delta$-diagonal exists (an answer to {J.} {Ginsburg} and {R.} {G.} {Woods'} question)},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {731--746},
year = {1984},
volume = {25},
number = {4},
mrnumber = {782022},
zbl = {0572.54003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a13/}
}
TY - JOUR AU - Shakhmatov, Dmitriĭ B. TI - No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta$-diagonal exists (an answer to J. Ginsburg and R. G. Woods' question) JO - Commentationes Mathematicae Universitatis Carolinae PY - 1984 SP - 731 EP - 746 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a13/ LA - en ID - CMUC_1984_25_4_a13 ER -
%0 Journal Article %A Shakhmatov, Dmitriĭ B. %T No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta$-diagonal exists (an answer to J. Ginsburg and R. G. Woods' question) %J Commentationes Mathematicae Universitatis Carolinae %D 1984 %P 731-746 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a13/ %G en %F CMUC_1984_25_4_a13
Shakhmatov, Dmitriĭ B. No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta$-diagonal exists (an answer to J. Ginsburg and R. G. Woods' question). Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 4, pp. 731-746. http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a13/
[1] GINSBUBG J., WOODS R. G.: A cardinal inequality for topological spaces involving closed discrete sets. - Proc. Amer. Math. Soc., 1977, t. 64, N 2, p. 357-360. | MR
[2] APХАНГЕЛЬСКИЙ A. B.: Стройенийе и класификация топологицеских пространств и кардинальные инварианты. - Уcпехи Матем. Наук 33, 6 (1978), 29-84. (Arhangel'skii A. V. A structure of spaces, their classification and cardinal invariants - Soviet math. Surveys, 1978, v. 33, N 6, p. 29-84). | MR
[3] ENGELKING R.: General topology. - Warszawa, PWN, 1977. | MR | Zbl
[4] ЦЕЙТЛИН M. Я.: Об одной задаче А. В. Архангельского. B сборнике Топология и теория множеств, Удмуртский госыдарственный университет. Ижевск 1982, с. 8-11 (Zeitlin M. J. On a question of A. V. Arhangel'skii. In: Topology and Theory of sets, University of the Udmurt Republic. Ishevsk, USSR, 1982, p. 8-11). | Zbl
[5] ШAXMATOB Д. Б.: О псевдокомпактныцч пространствах с точечно счотной базой. - Доклады AH CCCP, 1964 [в печати] (Shakhmatov D. B. On pseudocompact spaces with a point-countable base, to appear in Soviet Math. Dokl.).
[6] CEDER J. G.: Some generalisations of metric spaces. - Pacific J. Math., 1961, t. 11, N 1, p. 105-125. | MR
[7] HAJNAL A., JUHÁSZ I.: Discrete subspaces of topological spaces. - Indag. Math., 1967, v. 29, p. 343-356. | MR
[8] TERADA T.: Dense subspaces of topological spaces. (to appear in Canadian Math. J.).- Zentralblatt für Mathematik, 1983, B. 507, abstract 54005. | MR
[9] USPENSKII V. V.: A large $P_\sigma $-discrete Fréchet space having the Souslin property. - Comment. Math. Univ. Carolinae 25 (1984), 257-260. | MR