No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta$-diagonal exists (an answer to J. Ginsburg and R. G. Woods' question)
Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 4, pp. 731-746 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54A25, 54C25
@article{CMUC_1984_25_4_a13,
     author = {Shakhmatov, Dmitri\u{i} B.},
     title = {No upper bound for cardinalities of {Tychonoff} {C.C.C.} spaces with a $G_\delta$-diagonal exists (an answer to {J.} {Ginsburg} and {R.} {G.} {Woods'} question)},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {731--746},
     year = {1984},
     volume = {25},
     number = {4},
     mrnumber = {782022},
     zbl = {0572.54003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a13/}
}
TY  - JOUR
AU  - Shakhmatov, Dmitriĭ B.
TI  - No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta$-diagonal exists (an answer to J. Ginsburg and R. G. Woods' question)
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1984
SP  - 731
EP  - 746
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a13/
LA  - en
ID  - CMUC_1984_25_4_a13
ER  - 
%0 Journal Article
%A Shakhmatov, Dmitriĭ B.
%T No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta$-diagonal exists (an answer to J. Ginsburg and R. G. Woods' question)
%J Commentationes Mathematicae Universitatis Carolinae
%D 1984
%P 731-746
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a13/
%G en
%F CMUC_1984_25_4_a13
Shakhmatov, Dmitriĭ B. No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta$-diagonal exists (an answer to J. Ginsburg and R. G. Woods' question). Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 4, pp. 731-746. http://geodesic.mathdoc.fr/item/CMUC_1984_25_4_a13/

[1] GINSBUBG J., WOODS R. G.: A cardinal inequality for topological spaces involving closed discrete sets. - Proc. Amer. Math. Soc., 1977, t. 64, N 2, p. 357-360. | MR

[2] APХАНГЕЛЬСКИЙ A. B.: Стройенийе и класификация топологицеских пространств и кардинальные инварианты. - Уcпехи Матем. Наук 33, 6 (1978), 29-84. (Arhangel'skii A. V. A structure of spaces, their classification and cardinal invariants - Soviet math. Surveys, 1978, v. 33, N 6, p. 29-84). | MR

[3] ENGELKING R.: General topology. - Warszawa, PWN, 1977. | MR | Zbl

[4] ЦЕЙТЛИН M. Я.: Об одной задаче А. В. Архангельского. B сборнике Топология и теория множеств, Удмуртский госыдарственный университет. Ижевск 1982, с. 8-11 (Zeitlin M. J. On a question of A. V. Arhangel'skii. In: Topology and Theory of sets, University of the Udmurt Republic. Ishevsk, USSR, 1982, p. 8-11). | Zbl

[5] ШAXMATOB Д. Б.: О псевдокомпактныцч пространствах с точечно счотной базой. - Доклады AH CCCP, 1964 [в печати] (Shakhmatov D. B. On pseudocompact spaces with a point-countable base, to appear in Soviet Math. Dokl.).

[6] CEDER J. G.: Some generalisations of metric spaces. - Pacific J. Math., 1961, t. 11, N 1, p. 105-125. | MR

[7] HAJNAL A., JUHÁSZ I.: Discrete subspaces of topological spaces. - Indag. Math., 1967, v. 29, p. 343-356. | MR

[8] TERADA T.: Dense subspaces of topological spaces. (to appear in Canadian Math. J.).- Zentralblatt für Mathematik, 1983, B. 507, abstract 54005. | MR

[9] USPENSKII V. V.: A large $P_\sigma $-discrete Fréchet space having the Souslin property. - Comment. Math. Univ. Carolinae 25 (1984), 257-260. | MR