Hard implicit function theorem and small periodic solutions to partial differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 3, pp. 519-536 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35B10, 35G30, 47H15, 47H17, 47J25, 58C15
@article{CMUC_1984_25_3_a8,
     author = {Krej\v{c}{\'\i}, Pavel},
     title = {Hard implicit function theorem and small periodic solutions to partial differential equations},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {519--536},
     year = {1984},
     volume = {25},
     number = {3},
     mrnumber = {775567},
     zbl = {0567.35007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_3_a8/}
}
TY  - JOUR
AU  - Krejčí, Pavel
TI  - Hard implicit function theorem and small periodic solutions to partial differential equations
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1984
SP  - 519
EP  - 536
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1984_25_3_a8/
LA  - en
ID  - CMUC_1984_25_3_a8
ER  - 
%0 Journal Article
%A Krejčí, Pavel
%T Hard implicit function theorem and small periodic solutions to partial differential equations
%J Commentationes Mathematicae Universitatis Carolinae
%D 1984
%P 519-536
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1984_25_3_a8/
%G en
%F CMUC_1984_25_3_a8
Krejčí, Pavel. Hard implicit function theorem and small periodic solutions to partial differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 3, pp. 519-536. http://geodesic.mathdoc.fr/item/CMUC_1984_25_3_a8/

[1] M. ALTMAN: A series of papers on nonlinear evolution equations. Nonlin. Anal., Theory, Meth., Appl. 8 (1984), No. 5, pp. 457 - 499. | MR

[2] W. CRAIG: A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations. Ann. Scuola Norm. Sup. Pisa, ser. IV, vol. X (1983), pp. 125 - 168. | MR | Zbl

[3] B. D. CRAVEN M. Z. NASHED: Generalized implicit function theorems when the derivative has no bounded inverse. Nonlin. Anal., Theory, Meth., Appl. 6 (1982), pp. 375-387. | MR

[4] M. R. HESTENES: Extension of the range of a differentiable function. Duke Math. J. 8 (1941), pp. 183 - 192. | MR | Zbl

[5] L. HÖRMANDER: The boundary problems of physical geodesy. Arch. Rat. Keen. Anal. 62 (1976), pp. 1 - 52. | MR

[6] S. KLAINERMAN: Global existence for nonlinear wave equations. Comm. Pure Appl. Math. 33 (1980), pp. 43 - 101. | MR | Zbl

[7] P. KREJČÍ: Periodic vibrations of the electromagnetic field in ferromagnetic media. (in Czech). Candidate thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Prague, 1984.

[8] J. MOSER: A new technique for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. Sci. 47 (1961), pp. 1824 - 1831. | MR | Zbl

[9] J. MOSER: A rapidly-convergent iteration method and nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa 20-3 (1966), pp. 265 - 315, 499 - 535.

[10] J. NASH: The embedding problem for Riemannian manifolds. Ann. of Math. 63 (1956), pp. 20 - 63. | MR

[11] L. NIRENBERG: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13 (1959), pp. 115 - 162. | MR | Zbl

[12] H. PETZELTOVÁ: Application of Moser's method to a certain type of evolution equations. Czech. Math. J. 33 (1983), pp. 427 - 434. | MR | Zbl

[13] V. PTÁK: A modification of Newton's method. Čas. Pěst. Mat. 101 (1976), pp. 188 - 194. | MR | Zbl

[14] P. H. RABINOWITZ: Periodic solutions of nonlinear hyperbolic partial differential equations II. Comm. Pure Appl. Math. 22 (1969), pp. 15 - 39. | MR | Zbl

[15] J. T. SCHWARTZ: On Nash's implicit functional theorem. Comm. Pure Appl. Math. 13 (1960), pp. 509 - 530. | MR | Zbl

[16] J. SHATAH: Global existence of small solutions to nonlinear evolution equations. J. Diff. Eq. 46 (1982), pp.409 - 425. | MR | Zbl

[17] Y. SHIBATA: On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain. Funkc. Ekv. 25 (1982), pp. 303 - 345. | MR

[18] Y. SHIBATA: On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first-order dissipation in the exterior domain. Tsukuba J. Math. 7 (1983), pp. 1 - 68. | MR | Zbl