Remarks on nonlinear noncoercive problems with jumping nonlinearities
Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 3, pp. 373-399 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15, 34B25, 34C10, 34L99, 47H12, 47H15, 47J10
@article{CMUC_1984_25_3_a0,
     author = {Dr\'abek, Pavel},
     title = {Remarks on nonlinear noncoercive problems with jumping nonlinearities},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {373--399},
     year = {1984},
     volume = {25},
     number = {3},
     mrnumber = {775559},
     zbl = {0557.47032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_3_a0/}
}
TY  - JOUR
AU  - Drábek, Pavel
TI  - Remarks on nonlinear noncoercive problems with jumping nonlinearities
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1984
SP  - 373
EP  - 399
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1984_25_3_a0/
LA  - en
ID  - CMUC_1984_25_3_a0
ER  - 
%0 Journal Article
%A Drábek, Pavel
%T Remarks on nonlinear noncoercive problems with jumping nonlinearities
%J Commentationes Mathematicae Universitatis Carolinae
%D 1984
%P 373-399
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1984_25_3_a0/
%G en
%F CMUC_1984_25_3_a0
Drábek, Pavel. Remarks on nonlinear noncoercive problems with jumping nonlinearities. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 3, pp. 373-399. http://geodesic.mathdoc.fr/item/CMUC_1984_25_3_a0/

[1] L. BOCCARDO P. DRÁBEK D. GIACHETTI M. KUČERA: Generalization of Fredholm alternative for nonlinear differential operators. to appear. | MR

[2] E. N. DANCER: Boundary value problems for weakly nonlinear ordinary differential equations. Bull. Austr. Math. Soc. 15 (1976), 321-328. | MR | Zbl

[3] E. N. DANCER: On the Dirichlet problem for weakly nonlinear elliptic partial differential equations. Proc. R. Soc. Edinb. 76A (1977), 283-300. | MR

[4] P. DRÁBEK: Ranges of a-homogeneous operators and their perturbations. Čas. pěst. mat. 105 (1980), 167-183. | MR

[5] P. DRÁBEK: On the Fredholm alternative for a-homogeneous operators. in: Proceedings of "Colloquium on Topological methods in BVP's for 0DE's", Trieste, May 1984.

[6] P. DRÁBEK S. INVERNIZZI: On the periodic BVP for the forced Duffing equation with jumping nonlinearity. to appear. | MR

[7] S. FUČÍK: Note on the Fredholm Alternative for nonlinear operators. Comment. Math. Univ. Carolinae 12 (1971), 213-226. | MR

[8] S. FUČÍK J. NEČAS J. SOUČEK V. SOUČEK: Spectral analysis of nonlinear operators. Lecture Notes in Math. 346, Springer-Verlag, 1973. | MR

[9] S. FUČÍK: Boundary value problems with jumping nonlinearities. Čas. pěst. mat. 101 (1976), 69-87. | MR

[10] S. FUČÍK: Solvability and nonsolvability of weakly nonlinear equations. in: Proc. of Summer School "Theory of Nonlinear Operators", Akademie der Wissenschaften DDR 1977, 57-68. | MR

[11] S. FUČÍK: Solvability of nonlinear equations and boundary value problems. D. Riedel Publishing Company, Holland, 1980. | MR

[12] T. GALLOUËT O. KAVIAN: Résultats d 'Existence et de Non-Existence pour certains Problèmes Demilinéaires à l'infini. Ann. Fac. Sc. de Toulouse 1981.

[13] T. GALLOUËT O. KAVIAN: Resonance for jumping nonlinearities. Comm. in Part. Diff. Equations 7 (3) (1982), 325-342. | MR

[14] P. KREJČÍ: On solvability of equations of the 4th order with jumping nonlinearities. Čas. pěst. mat. 108 (1983), 29-39. | MR

[15] A. KUFNER O. JOHN S. FUČÍK: Function Spaces. Academia, Prague, 1977. | MR

[16] A. C. LAZER P. J. McKENNA: On conjecture related to the number of solutions of nonlinear Dirichlet problem. Proc. R. Soc. of Edinb. 95A (1983), 275-283. | MR

[17] J. NEČAS: Sur l'alternative de Fredholm pour les opérateurs non-llneaires avec applications aux problemes aux limites. Ann. Scuola Norm. Sup. Pisa 23 (1969), 331-345. | MR

[18] S. I. POCHOŽAJEV: On the solvability of nonlinear equations involving odd operators. (Russian), Funk. Analiz i Priloženija 1 (1967), 66-73. | MR

[19] B. RUF: A nonlinear Fredholm alternative for second order ordinary differential equations. to appear. | MR | Zbl

[20] B. RUF: Remarks and generalization related to recent multiplicity result of A. Lazer and P. McKenna. to appear.