@article{CMUC_1984_25_2_a6,
author = {Sou\v{c}ek, Ji\v{r}{\'\i}},
title = {Morse-Sard theorem for closed geodesics},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {265--272},
year = {1984},
volume = {25},
number = {2},
mrnumber = {768814},
zbl = {0552.58013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a6/}
}
Souček, Jiří. Morse-Sard theorem for closed geodesics. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 2, pp. 265-272. http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a6/
[1] MORSE A. P.: The behavior of a function on its critical set. Ann. of Math. 40 (1939), 62-70. | MR | Zbl
[2] DUBOVICKIJ A. J.: On the sets of singular points. (Russian), Izv. Akad. Nauk SSSR 31 (1967), 27-36. | MR
[3] SOUČEK J., SOUČEK V.: The Morse-Sard theorem for realanalytic functions. Comment. Math. Univ. Carolinae 13 (1972), 45-51. | MR
[4] POCHOZAJEV S. I.: On the set of critical values of functional. (Russian), Mat. Sb. 75 (1968), 106-111. | MR
[5] FUČÍK S., KUČERA M., NEČAS J., SOUČEK J., SOUČEK V.: Morse-Sard theorem in infinite-dimensional spaces and the investigation of critical levels. Čas. pěst. mat. 99 (1974), 217-243. | MR
[6] FUČÍK S., NEČAS J., SOUČEK J., SOUČEK V.: Upper bound for the number of eigenvalues for nonlinear operators. Ann. Scuola Norm. Sup. Pisa Vol. XXVII Fasc. 1 (1973), 53-71. | MR
[7] FUČÍK S., NEČAS J., SOUČEK J., SOUČEK V.: Spectral analysis of nonlinear operators. Lecture Notes in Mathematics No. 346, Springer-Verlag 1973. | MR
[8] KLINGENBERG W.: The theory of closed geodesics. in: Eigenvalues of non-linear problems, ed. Prodi G. (C.I.M.E. Varenna, Italy 1974), Edizioni Cremonese, Roma 1974. | MR
[9] KLINGENBERG W.: Lectures on closed geodesics. Springer-Verlag 1978. | MR | Zbl
[10] HELGASON S.: Differential geometry and symmetric spaces. Academic Press 1962. | MR | Zbl
[11] ALEXIEWICZ A., ORLICZ W.: Analytic operations in real Banach spaces. Studia Math. 14 (1954), 57-78. | MR
[12] KUČERA M.: Hausdorff measures of the set of critical values of functions of the class $C^{k,\lambda}$. Comment. Math. Univ. Carolinae 13 (1972), 333-350. | MR