On the radius of a set in a Hilbert space
Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 2, pp. 355-362 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46C05, 47H10, 47H99, 52A40, 58C05
@article{CMUC_1984_25_2_a15,
     author = {Dane\v{s}, Josef},
     title = {On the radius of a set in a {Hilbert} space},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {355--362},
     year = {1984},
     volume = {25},
     number = {2},
     mrnumber = {768823},
     zbl = {0568.46018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a15/}
}
TY  - JOUR
AU  - Daneš, Josef
TI  - On the radius of a set in a Hilbert space
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1984
SP  - 355
EP  - 362
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a15/
LA  - en
ID  - CMUC_1984_25_2_a15
ER  - 
%0 Journal Article
%A Daneš, Josef
%T On the radius of a set in a Hilbert space
%J Commentationes Mathematicae Universitatis Carolinae
%D 1984
%P 355-362
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a15/
%G en
%F CMUC_1984_25_2_a15
Daneš, Josef. On the radius of a set in a Hilbert space. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 2, pp. 355-362. http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a15/

[1] J. DANEŠ: On densifying and related mappings and their application in nonlinear functional analysis. in "Theory of Nonlinear Operators", Proceedings of Summer School (G. D. R., Neuendorf, 1972), Akademie-Verlag, Berlin (1974), 15-56. | MR

[2] J. DANEŠ: Some remarks on nonlinear functional analysis. Summer School on "Nonlinear Functional Analysis and Mechanics", Stará Lesná, High Tatras, Czechoslovakia, Sept. 23-27 (1974).

[3] H. W. E. JUNG: Über die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123 (1901), 241-257.

[4] H. STEINLEIN: A private communication (1978).