On the radius of a set in a Hilbert space
Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 2, pp. 355-362
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1984_25_2_a15,
author = {Dane\v{s}, Josef},
title = {On the radius of a set in a {Hilbert} space},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {355--362},
year = {1984},
volume = {25},
number = {2},
mrnumber = {768823},
zbl = {0568.46018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a15/}
}
Daneš, Josef. On the radius of a set in a Hilbert space. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 2, pp. 355-362. http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a15/
[1] J. DANEŠ: On densifying and related mappings and their application in nonlinear functional analysis. in "Theory of Nonlinear Operators", Proceedings of Summer School (G. D. R., Neuendorf, 1972), Akademie-Verlag, Berlin (1974), 15-56. | MR
[2] J. DANEŠ: Some remarks on nonlinear functional analysis. Summer School on "Nonlinear Functional Analysis and Mechanics", Stará Lesná, High Tatras, Czechoslovakia, Sept. 23-27 (1974).
[3] H. W. E. JUNG: Über die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123 (1901), 241-257.
[4] H. STEINLEIN: A private communication (1978).