A note on reflective subcategories defined by partial algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 2, pp. 319-323
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMUC_1984_25_2_a12,
author = {Szigeti, Jen\"o},
title = {A note on reflective subcategories defined by partial algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {319--323},
year = {1984},
volume = {25},
number = {2},
mrnumber = {768820},
zbl = {0556.18002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a12/}
}
Szigeti, Jenö. A note on reflective subcategories defined by partial algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 2, pp. 319-323. http://geodesic.mathdoc.fr/item/CMUC_1984_25_2_a12/
[1] ADÁMEK J.: Colimits of algebras revisited. Bull. Austral. Math. Soc. 17 (1977), 433-450. | MR
[2] ADÁMEK J., KOUBEK V.: Functotorial algebras and automata. Kybernetika 13 (1977), 245-260. | MR
[3] ADÁMEK J., TRNKOVÁ V.: Varietors and machines. COINS Technical Report 78-6, Univ. of Mass. at Amherst, 1978.
[4] BARR M.: Coequalizers and free triples. Math. Z. 116 (1970), 307-322. | MR | Zbl
[5] KOUBEK V., REITERMAN J.: Categorical constructions of free algebras, colimits, and completions of partial algebras. J. Pure Appl. Algebra 14 (1979), 195-231. | MR | Zbl
[6] MacLANE S.: Categories for the Working Mathematician. GTM 5, Springer-Verlag 1971. | MR