Two notes on locally finite cylindric algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 1, pp. 181-199
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03G15, 03G25
@article{CMUC_1984_25_1_a14,
     author = {Zlato\v{s}, Pavol},
     title = {Two notes on locally finite cylindric algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {181--199},
     year = {1984},
     volume = {25},
     number = {1},
     mrnumber = {749126},
     zbl = {0546.03036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a14/}
}
TY  - JOUR
AU  - Zlatoš, Pavol
TI  - Two notes on locally finite cylindric algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1984
SP  - 181
EP  - 199
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a14/
LA  - en
ID  - CMUC_1984_25_1_a14
ER  - 
%0 Journal Article
%A Zlatoš, Pavol
%T Two notes on locally finite cylindric algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 1984
%P 181-199
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a14/
%G en
%F CMUC_1984_25_1_a14
Zlatoš, Pavol. Two notes on locally finite cylindric algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 1, pp. 181-199. http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a14/

[1] H. ANDRÉKA T. GERGELY I. NÉMETI I. SAIN: Theory norphisms. Stepwise refinement of program specification. Representation of knowledge, and Cylindric algebras, preprint 1980.

[2] H. ANDRÉKA I. NÉMETI: Dimension complemented and locally finite cylindric algebras are elementarily equivalent. Algebra Universalis 13 (1981), 157-163. | MR

[3] G. BIRKHOFF J. D. LIPSON: Heterogeneous algebras. J. Comb. Theory 8 (1970), 115-133. | MR

[4] G. GRÄTZER: Universal Algebra. Springer, Berlin 1979. | MR

[5] L. HENKIN: Relativization with respect to formulas and its use in proofs of independence. Compositic Math. 20 (1968), 88-106. | MR | Zbl

[6] L. HENKIN J. D. MONK A. TARSKI: Cylindric Algebras. Part I, North-Holland, Amsterdam 1971. | MR

[7] L. HENKIN J. D. MONK A. TARSKI H. ANDRÉKA I. NÉMETI: Cylindric Sat Algebras. Lecture Notes in Math. 803, Springer, Berlin 1981. | MR

[8] S. MAC LANE: Catagories for the Working Mathematician. Springer, Berlin 1971.

[9] I. NÉMETI: Some constructions of cylindric algebra theory applied to dynamic algebrat of programs. Computation. Linguistics and Computer Languages 14 (1980), 43-65. | MR

[10] I. NÉMETI: Personal communication.

[11] A. PRELLER: On the relationship between the classical and the categorical direct product of algebras. Indag. Math. 30 (1968), 512-516. | MR

[12] J. SHOENFIELD: Mathematical Logic. Addison-Wesley, Reading, Mass. 1967. | MR | Zbl

[13] W. TAYLOR: Characterising Malcev conditions. Algebra Universalis, 3 (1973), 351-397. | MR

[14] P. ZLATOŠ: On conceptual completeness of syntactic-semantical systems. preprint 1983. | MR