@article{CMUC_1984_25_1_a11,
author = {Kr\'al, Josef},
title = {A note on continuity principle in potential theory},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {149--157},
year = {1984},
volume = {25},
number = {1},
mrnumber = {749123},
zbl = {0562.31009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a11/}
}
Král, Josef. A note on continuity principle in potential theory. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 1, pp. 149-157. http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a11/
[1] M. G. Arsove: Functions representable as differences of subharmonic functions. Trans. Amer. Math. Soc. 75 (1953), 327-365. | MR | Zbl
[2] H. Bauer: Šilovscher Rand und Dirichletsches Problem. Ann. Inst. Fourier 11 (1961), 89-136. | MR | Zbl
[3] M. Brelot: Lectures on potential theory. Tata Inst. of Fundamental Research, Bombay 1960. | MR | Zbl
[4] G. Choquet: Les noyaux réguliers en théorie du potentiel. C. R. Acad. Sci. Paris 243 (1956), 635-638. | MR | Zbl
[5] C. Constantinescu A. Cornea: Potential theory on harmonic spaces. Springer - Verlag 1972. | MR
[6] B. Fuglede: On the theory of potentials in locally compact spaces. Acta Math. 103 (1960), 139-215. | MR | Zbl
[7] M. Kishi: Selected topics from potential theory, chap. I: Lower semicontinuous function kernels. Kobenhavns Universitets Matematisk Inst. Publicationsseries 1978, N° 5.
[8] J. Král I. Netuka J. Veselý: Teorie potenciálu IV. (mimeographed lecture notes in Czech), SPN Praha 1977.
[9] N. S. Landkof: Osnovy sovremennoj teorii potenciala. Moskva 1966.
[10] I. Netuka: Continuity and maximum principle for potentials of signed measures. Czechoslovak Math. J. 25 (1975), 309-316. | MR | Zbl
[11] N. Ninomiya: Sur un principe du maximum pour le potential de Riesz-Frostman. J. Math. Osaka City Univ. 13 (1962), 57-62. | MR
[12] M. Ohtsuka: On the potentials in locally compact spaces. J. Sci. Hiroshima Univ. Ser. A-I, 25 (1961), 135-352. | MR
[13] R. Wittmann: A general continuity principle. Comment. Math. Univ. Carolinae 25 (1984), 141-147. | MR | Zbl