@article{CMUC_1984_25_1_a10,
author = {Wittmann, R.},
title = {A general continuity principle},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {141--147},
year = {1984},
volume = {25},
number = {1},
mrnumber = {749122},
zbl = {0562.31008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a10/}
}
Wittmann, R. A general continuity principle. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 1, pp. 141-147. http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a10/
[1] Bauer H.: Šilovscher Rand und Dirichletsches. Problem. Ann. Inst. Fourier 11, 89-136 (1961). | Zbl
[2] Berg C., Forst G.: Potential theory on locally compact Abelian groups. Springer Verlag. Berlin - Heidelberg - New York (1975). | Zbl
[3] Bliedtner J., Hansen W.: Markov processes and harmonic spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete 42, 309-325 (1978). | Zbl
[4] Boboc N., Cornea A.: Convex cones of lower semi-continuous functions on compact spaces. Rev. Roum. Math. Pures Appl. 12, 471-525 (1967).
[5] Boboc N., Bucur Gh., Cornea A.: Cones of potentials on topological spaces. Rev. Roum. Math. Pures Appl. 18, 815-865 (1973). | Zbl
[6] Constantinescu C., Cornea A.: Potential theory on harmonic spaces. Springer Verlag. Berlin - Heidelberg - New York (1972). | Zbl
[7] Landkof N. S.: Foundations of modern potential theory. Springer Verlag. Berlin - Heidelberg - New York (1972). | MR | Zbl
[8] Král J.: A note on continuity principle in potential theory. Comment. Math. Univ. Carolinae 25, 149-157 (1984). | MR
[9] Netuka I.: Continuity and maximum principle for potentials of signed measures. Czechoslovak Math. J. 25, 309-316 (1975). | MR | Zbl
[10] Wittmann R.: Shilov points and Shilov boundaries. Math. Ann. 263, 237-250 (1983). | MR | Zbl