@article{CMUC_1984_25_1_a1,
author = {Szufla, Stanis{\l}aw},
title = {An existence theorem for the {Urysohn} integral equation in {Banach} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {19--27},
year = {1984},
volume = {25},
number = {1},
mrnumber = {749113},
zbl = {0546.45011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a1/}
}
Szufla, Stanisław. An existence theorem for the Urysohn integral equation in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 1, pp. 19-27. http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a1/
[1] J. DAHER: On a fixed point principle of Sadovskii. Nonlinear Analysis 2 (1978), 643-645. | MR | Zbl
[2] J. BANEŠ: On densifying and related mappings and their applications in nonlinear functional analysis. Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56. | MR
[3] A. KOZEK: Orlicz spaces of functions with values in Banach spaces. Comm. Math. 19 (1977), 259-286. | MR | Zbl
[4] M. A. KRASNOSELSKII J. B. RUTICKII: Convex functions and Orlicz spaces. Moskva 1958. | MR
[5] W. ORLICZ S. SZUTLA: On some classes of nonlinear Volterre integral equations in Banach spaces. Bull. Acad. Polon. Sci. Math. 30 (1982), 239-250. | MR
[6] B. N. SADOVSKII: Limit-compact and condensing operatoгs. Russian Math. Surveys 27 (1972), 85-155. | MR