@article{CMUC_1984_25_1_a0,
author = {Vrancken-Mawet, Luc},
title = {The lattice of $R$-subalgebras of a bounded distributive lattice},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {1--17},
year = {1984},
volume = {25},
number = {1},
mrnumber = {749112},
zbl = {0542.06004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a0/}
}
Vrancken-Mawet, Luc. The lattice of $R$-subalgebras of a bounded distributive lattice. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a0/
[1] ADAMS M. E.: The Frattini sublattice of a distributive lattice. Alg. Univ. vol. 3/2 (1973), 216-228. | MR | Zbl
[2] DAVEY B. A.: Subdirectly irreducible distributive double p-algebras. Alg. Univ. vol. 8/1, 73-88. | MR | Zbl
[3] GRÄTZER G.: General lattice theory. Birk. Verlag Basel und Stuttgart (1978). | MR
[4] HANSOUL G., VARLET J.: Essential, strong and perfect extensions of lattices. Bull. Roy. Sci. Liège, 52 (1983), 22-24. | MR | Zbl
[5] MAYER R. D., PIERCE R. S.: Boolean algebras with ordered bases. Pacific J. of Math. 10 (1960), 925-942. | MR | Zbl
[6] PRIESTLEY H. A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 24 (1972), 507-530. | MR | Zbl
[7] PRIESTLEY H. A.: Ordered sets and duality for distributive lattices. to appear in the Proc. of the conference on ordered sets and their applications, Lyon, 1982. | MR