The lattice of $R$-subalgebras of a bounded distributive lattice
Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 1, pp. 1-17 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06C10, 06D05, 06D15
@article{CMUC_1984_25_1_a0,
     author = {Vrancken-Mawet, Luc},
     title = {The lattice of $R$-subalgebras of a bounded distributive lattice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--17},
     year = {1984},
     volume = {25},
     number = {1},
     mrnumber = {749112},
     zbl = {0542.06004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a0/}
}
TY  - JOUR
AU  - Vrancken-Mawet, Luc
TI  - The lattice of $R$-subalgebras of a bounded distributive lattice
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1984
SP  - 1
EP  - 17
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a0/
LA  - en
ID  - CMUC_1984_25_1_a0
ER  - 
%0 Journal Article
%A Vrancken-Mawet, Luc
%T The lattice of $R$-subalgebras of a bounded distributive lattice
%J Commentationes Mathematicae Universitatis Carolinae
%D 1984
%P 1-17
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a0/
%G en
%F CMUC_1984_25_1_a0
Vrancken-Mawet, Luc. The lattice of $R$-subalgebras of a bounded distributive lattice. Commentationes Mathematicae Universitatis Carolinae, Tome 25 (1984) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/CMUC_1984_25_1_a0/

[1] ADAMS M. E.: The Frattini sublattice of a distributive lattice. Alg. Univ. vol. 3/2 (1973), 216-228. | MR | Zbl

[2] DAVEY B. A.: Subdirectly irreducible distributive double p-algebras. Alg. Univ. vol. 8/1, 73-88. | MR | Zbl

[3] GRÄTZER G.: General lattice theory. Birk. Verlag Basel und Stuttgart (1978). | MR

[4] HANSOUL G., VARLET J.: Essential, strong and perfect extensions of lattices. Bull. Roy. Sci. Liège, 52 (1983), 22-24. | MR | Zbl

[5] MAYER R. D., PIERCE R. S.: Boolean algebras with ordered bases. Pacific J. of Math. 10 (1960), 925-942. | MR | Zbl

[6] PRIESTLEY H. A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 24 (1972), 507-530. | MR | Zbl

[7] PRIESTLEY H. A.: Ordered sets and duality for distributive lattices. to appear in the Proc. of the conference on ordered sets and their applications, Lyon, 1982. | MR