Positive quasi-minima
Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 4, pp. 681-691 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35A15, 35B45, 35B50, 35J20, 35J85, 49A34
@article{CMUC_1983_24_4_a9,
     author = {Mal\'y, Jan},
     title = {Positive quasi-minima},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {681--691},
     year = {1983},
     volume = {24},
     number = {4},
     mrnumber = {738564},
     zbl = {0551.35022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a9/}
}
TY  - JOUR
AU  - Malý, Jan
TI  - Positive quasi-minima
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1983
SP  - 681
EP  - 691
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a9/
LA  - en
ID  - CMUC_1983_24_4_a9
ER  - 
%0 Journal Article
%A Malý, Jan
%T Positive quasi-minima
%J Commentationes Mathematicae Universitatis Carolinae
%D 1983
%P 681-691
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a9/
%G en
%F CMUC_1983_24_4_a9
Malý, Jan. Positive quasi-minima. Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 4, pp. 681-691. http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a9/

[1] G. CHOQUET: Theory of capacities. Ann. Inst. Fourier 5 (1955), 131-295. | MR

[2] R. ENGELKING: General Topology. Warszawa 1977. | MR | Zbl

[3] M. GIAQUIHTA E. GIUSTI: On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31-46. | MR

[4] M. GIAQUIHTA E. GIUSTI: Quasi-minima. preprint.

[5] D. GILBARG N. S. TRUDINGER: Elliptic Partial Differential Equations of Second Order. Berlin - Heidelberg - New York: Springer 1977. | MR

[6] E. HOPP: Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Sitz. Ber. Preuss. Akad. Wissensch. Berlin, Math. - Phys. K1. 19 (1927), 147-152.

[7] J. MOSER: On Harnack' theorem for elliptic differential equations. Comm. Pure Appl. Math. 14 (1961), 577-591. | MR

[8] J. SERRIN: On the Harnack inequality for linear elliptic equations. J. Analyse Math. 4 (1955/56), 292-308. | MR

[9] N. S. TRUDINGER: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967), 721-747. | MR | Zbl

[10] J. VAISALA: Capacity and measure. Michigan Math. Journ. 22 (1975), 1-3. | MR