@article{CMUC_1983_24_4_a9,
author = {Mal\'y, Jan},
title = {Positive quasi-minima},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {681--691},
year = {1983},
volume = {24},
number = {4},
mrnumber = {738564},
zbl = {0551.35022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a9/}
}
Malý, Jan. Positive quasi-minima. Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 4, pp. 681-691. http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a9/
[1] G. CHOQUET: Theory of capacities. Ann. Inst. Fourier 5 (1955), 131-295. | MR
[2] R. ENGELKING: General Topology. Warszawa 1977. | MR | Zbl
[3] M. GIAQUIHTA E. GIUSTI: On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31-46. | MR
[4] M. GIAQUIHTA E. GIUSTI: Quasi-minima. preprint.
[5] D. GILBARG N. S. TRUDINGER: Elliptic Partial Differential Equations of Second Order. Berlin - Heidelberg - New York: Springer 1977. | MR
[6] E. HOPP: Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Sitz. Ber. Preuss. Akad. Wissensch. Berlin, Math. - Phys. K1. 19 (1927), 147-152.
[7] J. MOSER: On Harnack' theorem for elliptic differential equations. Comm. Pure Appl. Math. 14 (1961), 577-591. | MR
[8] J. SERRIN: On the Harnack inequality for linear elliptic equations. J. Analyse Math. 4 (1955/56), 292-308. | MR
[9] N. S. TRUDINGER: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967), 721-747. | MR | Zbl
[10] J. VAISALA: Capacity and measure. Michigan Math. Journ. 22 (1975), 1-3. | MR