@article{CMUC_1983_24_4_a8,
author = {Popa, V.},
title = {Theorems on multifunctions satisfying a rational inequality},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {673--680},
year = {1983},
volume = {24},
number = {4},
mrnumber = {738563},
zbl = {0537.54033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a8/}
}
Popa, V. Theorems on multifunctions satisfying a rational inequality. Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 4, pp. 673-680. http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a8/
[1] B. FISHER: Theorems on mappings satisfying a rational inequality. Comment. Math. Univ. Carolinae 19 (1978), 37-44. | MR | Zbl
[2] J. ACHARI: On a family of maps and fixed points. C. R. Acad. Bulgare des Sciences, 2 (1977), 171-174. | MR | Zbl
[3] TORU KITA: A common fixed point theorem for multivalued mappings In complete metric space. Mathematica Japonicae, 33 (1977), 113-116. | MR
[4] I. A. RUS: Fixed point theorems for multivalued mappings in oomplete metric space. Mathematica Japonicae, 20 (1975), 21-24. | MR
[5] D. G. MAIA: Un osservazione sulle contrazione metriche. Rend. Semin. Mat. Univ. Padova, 40 (1968), 139-143. | MR
[6] K. ISÉKI: A common fixed point theorem. Rend. Semin. Mat. Univ. Padova, 55 (1975), 13-H. | MR
[7] I. A. RUS: On a fixed point theorem of Maia. Studia Univ. Babes-Bolyai, Mathematica, XXII (1977), 40-42. | MR | Zbl
[8] I. A. RUS: On a fixed point theorem in a set with two metrics. L'Analyse numérique et la théorie de l approximation, 6 (1977). 197-202. | MR | Zbl
[9] K. L. SINGH: A note on common fixed points. Bull. Math. Soc. Sci. Math. R. S. R., 22 (70) (1978), 95-98. | MR | Zbl
[10] V. POPA: Fixed point theorems for multifunctions. Studia Univ. Babes-Bolyai, Mathematica, XXVII (1982), 21-27. | Zbl
[11] V. POPA: Fixed point theorems for a sequence of multifunctions. (to appear - Bull. Math. Soc. Sci. Math. R. S. R.) | MR | Zbl