On the equation $y'=f(t,y)$ in Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 4, pp. 609-630 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34G20
@article{CMUC_1983_24_4_a3,
     author = {Rzepecki, Bogdan},
     title = {On the equation $y'=f(t,y)$ in {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {609--630},
     year = {1983},
     volume = {24},
     number = {4},
     mrnumber = {738558},
     zbl = {0554.34040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a3/}
}
TY  - JOUR
AU  - Rzepecki, Bogdan
TI  - On the equation $y'=f(t,y)$ in Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1983
SP  - 609
EP  - 630
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a3/
LA  - en
ID  - CMUC_1983_24_4_a3
ER  - 
%0 Journal Article
%A Rzepecki, Bogdan
%T On the equation $y'=f(t,y)$ in Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1983
%P 609-630
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a3/
%G en
%F CMUC_1983_24_4_a3
Rzepecki, Bogdan. On the equation $y'=f(t,y)$ in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 4, pp. 609-630. http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a3/

[1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360. | MR | Zbl

[2] J. BANAŚ K. GOEBEL: Measure of noncompactness in Banach spaces. Lect. Notes Pure Applied Math. 60, Marcel Dekker, New York 1980. | MR

[3] J. BANAŚ A. HAJHOSZ S. WEDRYCHOWICZ: Some generalization of Szufla's theorem for ordinary differential equations in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. 29 (1981), 459-464. | MR

[4] J. DANEŠ: Some fixed point theorems. Comment. Math. Univ. Carolinae 9 (1968), 223-235. | MR

[5] J. DANEŠ: On denslfying and related mappings and their application in nonlinear functional analysis, Theory of nonlinear operators. Akademie-Verlag, Berlin 1974, 15-56. | MR

[6] K. DEIMLING: Ordinary differential equations in Banach spaces. Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. | MR | Zbl

[7] K. GOEBEL W. RZYMOWSKI: An existence theorem for the equation $x' = f(t,x)$ in Banach space. Bull. Acad. Polon. Sol., Sér. Sol. Math. Astronom. Phys. 28 (1970), 367-370. | MR

[8] M. A. KPACHOCEЛЬCKИЙ C. Г. KPEЙH: O npинсипe ycpeднения в нeлинейной механике. Ycnexн Mат. Hayx 10 (1955), 147-152.

[9] K. KURATOWSKI: Sur les espaces complete. Fund. Math. 15 (1930), 301-309.

[10] V. LAKSHMIKANTHAM S. LEELA: Differential and integral inequalities. Vol. 1, Academic Press, New York 1969.

[11] B. RZEPECKI: On the operator equation in Banach spaces. Demonstratio Math. 12 (1979), 189-201. | MR | Zbl

[12] B. RZEPECKI: Some properties of the set of solutions on an operator equation in a Banach space. Comment. Math. 22 (1978), 467-478. | MR

[13] B. RZEPECKI: On measure of noncompactness in topological spaces. Comment. Math. Univ. Carolinae 23 (1982), 105-116. | MR

[14] B. RZEPECKI: Euler polygons and Kneser's theorem for solutions of differential equations in Banach spaces. Comment. Math. Univ. Carolinae 23 (1982), 657-669. | MR | Zbl

[15] B. N. SADOVSKII: Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 86-144. | MR

[16] A. STOKES: The application of a fixed-point theorem to a variety of nonlinear stability problems. Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 231-235. | MR

[17] J. SZARSKI: Differential inequalities. PWN, Warszawa 1965. | MR | Zbl

[18] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 16 (1968), 795-800. | MR | Zbl

[19] S. SZUFLA: Solutions sets of nonlinear equations. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 21 (1973), 971-976. | MR | Zbl

[20] S. SZUFLA: Some properties of the solutions set of ordinary differential equations. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Pnys. 22 (1974), 675-678. | MR | Zbl

[21] S. SZUFLA: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 407-413. | MR | Zbl