The topological proof of the Nachbin-Shirota's theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 4, pp. 693-699 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A08, 46E10, 54C35
@article{CMUC_1983_24_4_a10,
     author = {Asanov, M. O. and Shamgunov, N. K.},
     title = {The topological proof of the {Nachbin-Shirota's} theorem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {693--699},
     year = {1983},
     volume = {24},
     number = {4},
     mrnumber = {738565},
     zbl = {0553.54003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a10/}
}
TY  - JOUR
AU  - Asanov, M. O.
AU  - Shamgunov, N. K.
TI  - The topological proof of the Nachbin-Shirota's theorem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1983
SP  - 693
EP  - 699
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a10/
LA  - en
ID  - CMUC_1983_24_4_a10
ER  - 
%0 Journal Article
%A Asanov, M. O.
%A Shamgunov, N. K.
%T The topological proof of the Nachbin-Shirota's theorem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1983
%P 693-699
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a10/
%G en
%F CMUC_1983_24_4_a10
Asanov, M. O.; Shamgunov, N. K. The topological proof of the Nachbin-Shirota's theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 4, pp. 693-699. http://geodesic.mathdoc.fr/item/CMUC_1983_24_4_a10/

[1] A. V. ARHANGEL'SKIĬ: On linear homeomorphism function spaces. Dokl. Akad. Nauk SSSR (in Russian) 264 (1982), 1289-1292. | MR

[2] L. NACHBIN: Topological vector spaces of continuous functions. Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 471-474. | MR | Zbl

[3] T. SHIROTA: On locally convex vector spaces of continuous functions. Proc. Japan Acad. Sci. 30 (1954), 294-298. | MR | Zbl

[4] E. BECKENSTEIN L. NARICI C. SUFFEL: Topological Algebras. North-Holland Mathematics Studies 24 (1977). | MR

[5] J. SCHMETS: Espaces des Fonctions Continues. Lect. Notes Math. 519 (1976). | MR

[6] J. SCHMETS: Indépendence des propriétés de tonnelage et d'évaluabilité affaiblis. Bull. Soc. Roy. Liège 42 (1973), 111-115. | MR

[7] S. VARNER: The topology of compact convergence on continuous function spaces. Duke Math. J. 25 (1958), 265-282. | MR