@article{CMUC_1983_24_2_a14,
author = {Vojt\'a\v{s}, Peter},
title = {Game properties of {Boolean} algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {349--369},
year = {1983},
volume = {24},
number = {2},
mrnumber = {711272},
zbl = {0516.04007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1983_24_2_a14/}
}
Vojtáš, Peter. Game properties of Boolean algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 24 (1983) no. 2, pp. 349-369. http://geodesic.mathdoc.fr/item/CMUC_1983_24_2_a14/
[1] B. BALCAR J. PELANT P. SIMON: The space of ultrafilters on N covered by nowhere dense sets. Fund. Math. 110 (1980), 11-24. | MR
[2] L. BUKOVSKÝ: $\Detla $ -model and distributivity in Boolean algebras. Comment. Math. Univ. Carolinae 9 (1968), 595-612. | MR
[3] P. L. DORDAL: Independence result a concerning some combinatorial properties of the continuum. Ph.D.Thesis, Harvard University, Cambridge, Mass. 1982.
[4] M. FOREMAN: Games played on Boolean algebras. Preprint. | MR | Zbl
[5] C. GRAY: Iterated forcing from the strategic point of view. Ph.D.Thesis, Berkeley 1980.
[6] T. JECH: A game theoretic property of Boolean algebras. Logio Colloquium '77 (A. Mac Intyre et al., eds.) p. 135-144 North Holland Publ. Co. Amsterdam 1978. | MR | Zbl
[7] T. JECH: Set theory. Academic Press, Nev York 1978. | MR | Zbl
[8] R. S. PIERCE: Models over commutative rings. Meat. Amer. Math. Soc. no 70, Providence, R.I. , AMS 1967. | MR
[9] A. SZYMANSKI H. X. ZHOU: to appear in General Topology and its Relatione to Modern Analysis and Algebra V. (Proc. Fifth Prague Topological Symp. 1981). Heldermann Verlag, Berlin 1982. | MR
[10] P. VOJTÁŠ: A transfinite Boolean game and a generalization of Kripke's embedding theorem. General Topology and its Relations to Modern Analysis and Algebra V. (Proc. Fifth Prague Topological Symp. 1981). Heldermann Verlag, Berlin 1982, 663-668.
[11] P. VOJTÁŠ: Simultaneous strategies and Boolean games of uncountable length. (Proc. 10th Winter Sohool on Abstract Analyais, Srní 1982). Supplemento ai Randiconti del Circolo Matematico di Palermo, Serie II, 2, 1982, 293-297. | MR
[12] P. VOPĚNKA P. HÁJEK: The theory of semisets. Academic Prague and North Holland, Amsterdam 1972. | MR